This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066700 #16 May 25 2022 11:23:37 %S A066700 1,2,12,4,34,1,22,1,4,1,1,2,1,1,17,16,3,1,1,2,1,1,1,5,1,1,3,3,14,2, %T A066700 107,1,1,8,5,4,7,1,4,1,6,3,19,3,1,1,2,3,5,76,1,1,2,1,1,90,2,2,48717,1, %U A066700 1,1,3,1,1,2,4,1,1,1,14,2,1,1,2,4,28,2,3,46,1,1,3,1,1,1,2,1,5,12,1,1,3,3,1,2,3,1,78,1,1,1,3,2,4,1,6,1,1,1048,1,3,1,1,2,3,4,1,2,4,3,8,1,12,5,1,1,7,1,11,11,1,118,6,1,2,1,5,3,1,1,1,2,3,1,2,1,1,2,2,3,5,4,1,12,147838832589501802758390,1,10,1,1,1,2,4,6,10,2,8,1,2,1,1,7,1,1,1,3,9,1,1,1,55,1,1,1,1,2 %N A066700 The leading digits in the terms in A067103 converge; dividing by a suitable power of 10 they converge to the number shown below; sequence gives continued fraction for this number. %e A066700 1.480389426511475059423875475946678140937510326102334419703757169... %o A066700 (PARI) {A067103(n)= c=0; d=0; for(i=1,n, c=c*10^(1+floor(3*log(i)/log(10)))+i^3; d=d*10^(1+floor(log(i)/log(10)))+i; ); floor(c/d) } %o A066700 (PARI) c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908 %o A066700 c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522 %o A066700 lista() = my(nn=1000); default(realprecision, 1000); my(x=c3(nn)\c1(nn)); x = x/10.^(#Str(x)-1); contfrac(x); \\ _Michel Marcus_, May 25 2022 %Y A066700 Cf. A007908, A019522, A067103. %Y A066700 For a more dramatic continued fraction see A030167. %K A066700 easy,cofr,nonn,base %O A066700 1,2 %A A066700 _Randall L Rathbun_, Jan 12 2002