cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066716 Decimal expansion of the binary Champernowne constant 0.862240125868... whose binary expansion is the concatenation of 1, 2, 3, ... written in binary.

This page as a plain text file.
%I A066716 #65 Feb 16 2025 08:32:45
%S A066716 8,6,2,2,4,0,1,2,5,8,6,8,0,5,4,5,7,1,5,5,7,7,9,0,2,8,3,2,4,9,3,9,4,5,
%T A066716 7,8,5,6,5,7,6,4,7,4,2,7,6,8,2,9,9,0,9,4,5,1,6,0,7,1,2,1,4,5,5,7,3,0,
%U A066716 6,7,4,0,5,9,0,5,1,6,4,5,8,0,4,2,0,3,8,4,4,1,4,3,8,6,1,8,1,3,3,4
%N A066716 Decimal expansion of the binary Champernowne constant 0.862240125868... whose binary expansion is the concatenation of 1, 2, 3, ... written in binary.
%C A066716 A theorem of Copeland & Erdős proves that this constant is 2-normal. - _Charles R Greathouse IV_, Feb 06 2015
%C A066716 This constant is transcendental. Note that this result is nontrivial: it is not a corollary of the result of Masaaki Amou saying that the base-b Champernowne constant has irrationality measure b, because the Thue-Siegel-Roth theorem only guarantees that a number with irrationality measure greater than 2 is transcendental. However, it is already stated in Masaaki Amou's paper that K. Mahler proved that the base-b Champernowne constant is transcendental for all b. - _Jianing Song_, Sep 27 2023
%H A066716 Paolo Xausa, <a href="/A066716/b066716.txt">Table of n, a(n) for n = 0..10000</a>
%H A066716 Masaaki Amou, <a href="https://doi.org/10.1016/S0022-314X(05)80039-3">Approximation to certain transcendental decimal fractions by algebraic numbers</a>, J. Number Theory, 37 (2) (1991), pp. 231-241.
%H A066716 A. H. Copeland and P. Erdős, <a href="http://dx.doi.org/10.1090/S0002-9904-1946-08657-7">Note on normal numbers</a>, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.
%H A066716 Eric E. Weisstein, <a href="https://mathworld.wolfram.com/BinaryChampernowneConstant.html">Binary Champernowne Constant</a>.
%F A066716 The "binary" Champernowne constant is the number whose base-2 expansion is the concatenation of the binary representations of the integers, 0.(1)(10)(11)(100)(101)(110)(111)(1000)..., cf. A030302.
%e A066716 0.8622401258680545715577902832493945785657647427682990945160712145573067405905...
%t A066716 a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 100} ]; RealDigits[ N[ FromDigits[ {Flatten[a], 0}, 2], 100]]
%t A066716 First[RealDigits[ChampernowneNumber[2], 10, 100]] (* _Paolo Xausa_, Jun 12 2024 *)
%o A066716 (PARI) my(s=0.); forstep(n=default(realprecision),1,-1,s=(s+n)>>#binary(n)); s \\ _Charles R Greathouse IV_, Feb 06 2015, corrected by _M. F. Hasler_, Mar 22 2017
%o A066716 (PARI) s=0;sum(n=1,31,n*.5^s+=logint(n,2)+1) \\ Accurate to 0.5^s. The sum up to n=31 is enough for standard precision of 38 digits. - _M. F. Hasler_, Mar 22 2017
%Y A066716 Cf. A030302 (binary digits), A030190 (same with initial 0), A030303 (indices of 1's), A007088, A047778 (concatenate binary 1..n).
%Y A066716 Cf. A066717 (continued fraction), A365238 (reciprocal).
%Y A066716 Cf. A100125 (Sum n/2^(n^2)).
%Y A066716 Cf. A033307.
%K A066716 cons,nonn,base
%O A066716 0,1
%A A066716 _Robert G. Wilson v_, Jan 14 2002
%E A066716 Leading zero removed, offset adjusted, and keyword:cons added by _R. J. Mathar_, Mar 04 2010
%E A066716 Name edited by _M. F. Hasler_, Oct 26 2019