This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066726 #27 Jul 02 2024 16:03:40 %S A066726 2,3,5,9,15,29,43,51,113,184,213,222,267,279,369,402,441,603,812,839, %T A066726 902,1422,1542,1824,2983,3065,3911,3958,4192,4587,4865,5543,5837,7902, %U A066726 9299,9722,10412,10648,11498,12803,14428,15876,20173,26311,38927,52210,54189,59757,60454,72094,76899,85033,91059,91059 %N A066726 Numbers n such that binomial(2n, n) - 1 is prime. %C A066726 I.e., numbers n such that (2*n)!/(n!)^2-1 is prime. - _Hugo Pfoertner_, Sep 25 2005 %C A066726 The next term is > 30000. - _Vaclav Kotesovec_, May 03 2021 %C A066726 a(55) > 100000. - _Robert Price_, Jul 02 2024 %t A066726 Do[ If[ PrimeQ[ Binomial[2n, n] - 1], Print[n]], {n, 1, 2000} ] %o A066726 (PARI) is(n)=isprime(binomial(2*n,n)-1) \\ _Charles R Greathouse IV_, Feb 17 2017 %Y A066726 Cf. A066699, A085793. %Y A066726 Cf. A092751 = primes of the form (2*n)!/(n!)^2-1, A112853 = (2*n)!/n!-1 is prime, A112855 = (2*n)!/n!+1 is prime, A066699 = (2*n)!/(n!)^2+1 is prime, A112861 = (2*n)!/(2*(n!)^2)-1 is prime, A112863 = (2*n)!/(2*(n!)^2)+1 is prime. - _Hugo Pfoertner_, Sep 25 2005 %K A066726 nonn %O A066726 1,1 %A A066726 _Robert G. Wilson v_, Jan 15 2002 %E A066726 More terms from _Ed Pegg Jr_, Sep 10 2003 %E A066726 Edited by _N. J. A. Sloane_, Aug 23 2008 at the suggestion of _R. J. Mathar_ %E A066726 a(43)-a(44) from _Vaclav Kotesovec_, May 03 2021 %E A066726 a(45)-a(54) from _Robert Price_, Jul 02 2024