This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066740 #13 Nov 05 2023 14:59:57 %S A066740 1,1,2,5,13,44,151,614,2446,11066,53368,253927,1316375,7213979, %T A066740 38175696,213766427 %N A066740 Number of distinct partitions of A007504(n) which can be obtained by merging parts in the partition 2+3+5+...+prime(n), where prime(n) is the n-th prime. %e A066740 For n=4, the 13 partitions are 17, 2+15, 3+14, 5+12, 7+10, 8+9, 2+3+12, 2+5+10, 2+7+8, 3+5+9, 3+7+7, 5+5+7, 2+3+5+7. 5+12 and 7+10 can be obtained in two ways each: 5+12 = (5)+(2+3+7) = (2+3)+(5+7), 7+10 = (7)+(2+3+5) = (2+5)+(3+7). %p A066740 b:= proc(n) local p; p:= `if`(n=0, 1, ithprime(n)); %p A066740 b(n):= `if`(n<2, {[p$n]}, map(x-> [sort([x[], p]), %p A066740 seq(sort(subsop(i=x[i]+p, x)), i=1..nops(x))][], b(n-1))) %p A066740 end: %p A066740 a:= n-> nops(b(n)): %p A066740 seq(a(n), n=0..10); # _Alois P. Heinz_, May 31 2013 %t A066740 addto[ p_, k_ ] := Module[ {}, lth=Length[ p ]; Union[ Sort/@Append[ Table[ Join[ Take[ p, i-1 ], {p[ [ i ] ]+k}, Take[ p, i-lth ] ], {i, 1, lth} ], Append[ p, k ] ] ] ]; addtolist[ plist_, k_ ] := Union[ Join@@(addto[ #, k ]&/@plist) ]; l[ 0 ]={{}}; l[ n_ ] := l[ n ]=addtolist[ l[ n-1 ], Prime[ n ] ]; a[ n_ ] := Length[ l[ n ] ] %Y A066740 Cf. A007504, A066723. %K A066740 more,nonn %O A066740 0,3 %A A066740 _Naohiro Nomoto_, Jan 16 2002 %E A066740 Edited by _Dean Hickerson_, Jan 18 2002 %E A066740 a(14)-a(15) from _Sean A. Irvine_, Nov 05 2023