cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066740 Number of distinct partitions of A007504(n) which can be obtained by merging parts in the partition 2+3+5+...+prime(n), where prime(n) is the n-th prime.

This page as a plain text file.
%I A066740 #13 Nov 05 2023 14:59:57
%S A066740 1,1,2,5,13,44,151,614,2446,11066,53368,253927,1316375,7213979,
%T A066740 38175696,213766427
%N A066740 Number of distinct partitions of A007504(n) which can be obtained by merging parts in the partition 2+3+5+...+prime(n), where prime(n) is the n-th prime.
%e A066740 For n=4, the 13 partitions are 17, 2+15, 3+14, 5+12, 7+10, 8+9, 2+3+12, 2+5+10, 2+7+8, 3+5+9, 3+7+7, 5+5+7, 2+3+5+7. 5+12 and 7+10 can be obtained in two ways each: 5+12 = (5)+(2+3+7) = (2+3)+(5+7), 7+10 = (7)+(2+3+5) = (2+5)+(3+7).
%p A066740 b:= proc(n) local p; p:= `if`(n=0, 1, ithprime(n));
%p A066740       b(n):= `if`(n<2, {[p$n]}, map(x-> [sort([x[], p]),
%p A066740       seq(sort(subsop(i=x[i]+p, x)), i=1..nops(x))][], b(n-1)))
%p A066740     end:
%p A066740 a:= n-> nops(b(n)):
%p A066740 seq(a(n), n=0..10);  # _Alois P. Heinz_, May 31 2013
%t A066740 addto[ p_, k_ ] := Module[ {}, lth=Length[ p ]; Union[ Sort/@Append[ Table[ Join[ Take[ p, i-1 ], {p[ [ i ] ]+k}, Take[ p, i-lth ] ], {i, 1, lth} ], Append[ p, k ] ] ] ]; addtolist[ plist_, k_ ] := Union[ Join@@(addto[ #, k ]&/@plist) ]; l[ 0 ]={{}}; l[ n_ ] := l[ n ]=addtolist[ l[ n-1 ], Prime[ n ] ]; a[ n_ ] := Length[ l[ n ] ]
%Y A066740 Cf. A007504, A066723.
%K A066740 more,nonn
%O A066740 0,3
%A A066740 _Naohiro Nomoto_, Jan 16 2002
%E A066740 Edited by _Dean Hickerson_, Jan 18 2002
%E A066740 a(14)-a(15) from _Sean A. Irvine_, Nov 05 2023