cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066817 Conjectured values of first prime in the orbit f(m), f(f(m)), ..., where f(n) = A067599(n) and m = n-th composite number; or 0 if none exists.

This page as a plain text file.
%I A066817 #18 Nov 12 2023 13:27:18
%S A066817 0,2131,23,3224591,0,0,
%T A066817 241127117451117479045190960709721125675426733715695733779133596697360781090711425903130196316185995152974660668512820125356019549490226189398938302252287927928254649608061563193945459975102656949618158919173931,
%U A066817 0,0,0,2251,0,0,0,3224591,314313643123658229739531,97211238048939739899395714118873644859466103898031,0,46747167851021731,3224591,97211238048939739899395714118873644859466103898031,3141114911731,5171
%N A066817 Conjectured values of first prime in the orbit f(m), f(f(m)), ..., where f(n) = A067599(n) and m = n-th composite number; or 0 if none exists.
%C A066817 The terms with 0 value listed above are conjectural. There are no primes < 10^30.
%C A066817 From _Sean A. Irvine_, Nov 09 2023: (Start)
%C A066817 None of the unresolved cases with n < 50 terminates in a prime < 10^130.
%C A066817 Because the trajectories under f can coalesce certain values are known to be equal even if that value is currently unknown. For example, a(1) = a(13) and a(9) = a(14).
%C A066817 Because of the inclusion of exponents 1 in the concatenation defined by f, terms in the trajectory typically grow quicker than in A195264 or A037274.
%C A066817 (End)
%t A066817 (* f returns an array encoding the prime factorization of n *) f[ n_] := Module[ {a, l, i, t = {} }, a = FactorInteger[ n]; l = Length[ a]; For[ i = 1, i <= l, i++, t = Append[ t, a[ [ i]][ [ 1]]]; t = Append[ t, a[ [ i]][ [ 2]]]]; t];
%t A066817 (* g returns the concatenation of the elements of its input array *) g[ x_] := Module[ {r = "", m = Length[ x], l}, For[ l = 1, l <= m, l++, r = StringJoin[ r, ToString[ x[ [ l]]]]]; r];
%t A066817 (* h returns an array of the digits of its input int string *) h[ n_] := IntegerDigits[ ToExpression[ n]]
%t A066817 (* j returns the number formed from the digits in its input array *) j[ x_] := Module[ {r = 0, m = Length[ x], t = x, l}, For[ l = 1, l <= m, l++, r = 10*r + t[ [ 1]]; t = Rest[ t]]; r];
%t A066817 (* k composes the previous functions *) k[ n_] := j[ h[ g[ f[ n]]]]
%t A066817 s[ n_] := Module[ {a=n, r=0}, While[ !PrimeQ[ a] && a<10^30, a=k[ a]]; If[ PrimeQ[ a], r=a]; r]; Table[ s[ i], {i, 2, 50}]
%Y A066817 Cf. A002808, A067599, A067600, A037274, A195264.
%K A066817 nonn,base,less
%O A066817 1,2
%A A066817 _Joseph L. Pe_, Feb 01 2002
%E A066817 Offset changed to 1 by _Jinyuan Wang_, Jul 30 2020
%E A066817 a(7) and a(17) resolved and missing a(21) inserted by _Sean A. Irvine_, Nov 09 2023