cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066822 The fourth column of A038622, triangular array that counts rooted polyominoes.

This page as a plain text file.
%I A066822 #32 Jan 08 2025 09:26:19
%S A066822 1,5,20,71,238,770,2436,7590,23397,71566,217646,659022,1988805,
%T A066822 5986176,17980968,53922096,161492571,483149385,1444245936,4314214443,
%U A066822 12880107548,38436170366,114657076900,341926185770,1019435748435,3038815305981,9056974493700
%N A066822 The fourth column of A038622, triangular array that counts rooted polyominoes.
%C A066822 There is a general solution for all rows of this triangular array: For the k-th row and n-th term on this row: a(0)=0; a(1)=1; a(n) = (2*k-1+n)*n*a(n) = 2*(n+k)*(n+k-1)*a(n-1) + 3*(n+k-1)*(n+k-2)*a(n-2).
%H A066822 Reinhard Zumkeller, <a href="/A066822/b066822.txt">Table of n, a(n) for n = 0..1000</a>
%H A066822 D. Gouyou-Beauchamps and G. Viennot, <a href="http://dx.doi.org/10.1016/0196-8858(88)90017-6">Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem</a>, Adv. in Appl. Math. 9 (1988), no. 3, 334-357.
%F A066822 a(0)=0; a(1)=1; (n+7)*n*a(n)=2*(n+4)*(n+3)*a(n-1) + 3*(n+3)*(n+2)*a(n-2).
%F A066822 a(n) = ((-3)^(1/2)/9)*(-2*(n+7)^(-1)*(n+4)*(-1)^n*hypergeom([3/2, n+6],[2],4/3)-(n+6)^(-1)*(-1)^n*(5*n+18)*hypergeom([3/2, n+5],[2],4/3)). - _Mark van Hoeij_, Oct 31 2011
%F A066822 a(n) ~ 3^(n+7/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 10 2014
%F A066822 a(n) = GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2). - _Peter Luschny_, May 12 2016
%p A066822 a := n -> simplify(GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2)):
%p A066822 seq(a(n), n=0..20); # _Peter Luschny_, May 12 2016
%t A066822 Table[GegenbauerC[n,-n-3,-1/2]+GegenbauerC[n-1,-n-3,-1/2],{n,0,40}] (* _Harvey P. Dale_, Feb 20 2017 *)
%o A066822 (PARI) s=[0,1]; {A038622(n,k)=if(n==0,1,t=(2*(n+k)*(n+k-1)*s[2]+3*(n+k-1)*(n+k-2)*s[1])/((n+2*k-1)*n); s[1]=s[2]; s[2]=t; t)}
%o A066822 (Haskell)
%o A066822 a066822 = flip a038622 3 . (+ 3)  -- _Reinhard Zumkeller_, Feb 26 2013
%Y A066822 Cf. A038622.
%Y A066822 Cf. A005773, A005774, A005775.
%K A066822 easy,nice,nonn
%O A066822 0,2
%A A066822 _Randall L Rathbun_, Jan 19 2002
%E A066822 More terms from _Harvey P. Dale_, Feb 20 2017