This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066875 #38 Dec 10 2024 11:58:42 %S A066875 3,16,37,40,47,55,56,74,103,108,111,119,130,161,165,185,188,195,200, %T A066875 219,240,272,273,292,340,359,388,420,427,465,466,509,521,554,600,606, %U A066875 622,630,634,668,683,684,703,710,711,734,762,792,814,822,823,830,831,883 %N A066875 Numbers k such that prime(k+1) + prime(k-1) = 2*prime(k). %C A066875 The indices of primes that are equidistant from the two primes surrounding them. - _Harvey P. Dale_, May 16 2013 %C A066875 Indices of balanced primes (A006562). - _Zak Seidov_, Mar 03 2019 %H A066875 Harry J. Smith, <a href="/A066875/b066875.txt">Table of n, a(n) for n = 1..1000</a> %F A066875 a(n) = primepi(A006562(n)) = A000720(A006562(n)). %t A066875 Select[Range[2, 1000], Prime[ # ] == (Prime[ # + 1] + Prime[ # - 1])/2 &] (* _Ray Chandler_, Jan 09 2007 *) %t A066875 PrimePi/@Transpose[Select[Partition[Prime[Range[900]],3,1],Length[ Union[ Differences[ #]]]==1&]][[2]] (* _Harvey P. Dale_, May 16 2013 *) %o A066875 (PARI) isok(k) = { k > 1 && prime(k+1) + prime(k-1) == 2*prime(k) } \\ _Harry J. Smith_, Apr 03 2010 %o A066875 (Magma) [n: n in [2..1000] | 2*NthPrime(n) eq (NthPrime(n-1) + NthPrime(n+1))]; // _Vincenzo Librandi_, Apr 09 2015 %Y A066875 Cf. A000720 (primepi), A006562 (balanced primes). %K A066875 nonn %O A066875 1,1 %A A066875 _Benoit Cloitre_, Jan 21 2002 %E A066875 Corrected by _Ray Chandler_, Jan 09 2007