A066884 Square array read by upward antidiagonals where the n-th row contains the positive integers with n binary 1's.
1, 3, 2, 7, 5, 4, 15, 11, 6, 8, 31, 23, 13, 9, 16, 63, 47, 27, 14, 10, 32, 127, 95, 55, 29, 19, 12, 64, 255, 191, 111, 59, 30, 21, 17, 128, 511, 383, 223, 119, 61, 39, 22, 18, 256, 1023, 767, 447, 239, 123, 62, 43, 25, 20, 512, 2047, 1535, 895, 479, 247, 125, 79, 45, 26, 24, 1024
Offset: 1
Examples
Column: 1 2 3 4 5 6 ----------------------------- Row 1:| 1 2 4 8 16 32 Row 2:| 3 5 6 9 10 12 Row 3:| 7 11 13 14 19 21 Row 4:|15 23 27 29 30 39 Row 5:|31 47 55 59 61 62 Row 6:|63 95 111 119 123 125
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8001 (126 antidiagonals)
- Vladimir Dobric, M. Skyers, and L. J. Stanley, Polynomial Time Computable Triangular Arrays For Almost Sure Convergence, arXiv preprint arXiv:1603.04896 [math.PR], 2016. [Shows that this sequence is in P-TIME]
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Selected rows: A000079 (1), A018900 (2), A014311 (3), A014312 (4), A014313 (5), A023688 (6), A023689 (7), A023690 (8), A023691 (9), A038461 (10), A038462 (11), A038463 (12). For decimal analogs, see A011557 and A038444-A038452.
Selected diagonals: A036563 (main), A000918 (1st upper), A153894 (2nd upper). [Franklin T. Adams-Watters, Apr 22 2009]
Cf. A067576 (the same array read by downward antidiagonals).
Antidiagonal sums give A361074.
Programs
-
Mathematica
a = {}; Do[ a = Append[a, Last[ Take[ Take[ Select[ Range[2^12], Count[ IntegerDigits[ #, 2], 1] == j - i + 1 & ], j], i]]], {j, 1, 11}, {i, 1, j}]; a
Extensions
Corrected and extended by Henry Bottomley, Jan 27 2002
Comments