cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066897 Total number of odd parts in all partitions of n.

This page as a plain text file.
%I A066897 #82 Jan 15 2025 04:17:39
%S A066897 1,2,5,8,15,24,39,58,90,130,190,268,379,522,722,974,1317,1754,2330,
%T A066897 3058,4010,5200,6731,8642,11068,14076,17864,22528,28347,35490,44320,
%U A066897 55100,68355,84450,104111,127898,156779,191574,233625,284070,344745,417292,504151
%N A066897 Total number of odd parts in all partitions of n.
%C A066897 Also sum of all odd-indexed parts minus the sum of all even-indexed parts of all partitions of n (Cf. A206563). - _Omar E. Pol_, Feb 12 2012
%C A066897 Column 1 of A206563. - _Omar E. Pol_, Feb 15 2012
%C A066897 Suppose that p=[p(1),p(2),p(3),...] is a partition of n with parts in nonincreasing order.  Let f(p) = p(1) - p(2) + p(3) - ... be the alternating sum of parts of p and let F(n) = sum of alternating sums of all partitions of n.  Conjecture: F(n) = A066897(n) for n >= 1. - _Clark Kimberling_, May 17 2019
%C A066897 From _Omar E. Pol_, Apr 02 2023: (Start)
%C A066897 Convolution of A000041 and A001227.
%C A066897 Convolution of A002865 and A060831.
%C A066897 a(n) is also the total number of odd divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned odd divisors are also all odd parts of all partitions of n. (End)
%C A066897 a(n) is odd iff n is a term of A067567 (proof: n*p(n) = the sum of the parts in all the partitions of n == the number of odd parts in all partitions of n (mod 2). Hence the number of odd parts in all partitions of n is odd iff n*p(n) is odd, equivalently, iff both n and p(n) are odd). - _Peter Bala_, Jan 11 2025
%H A066897 Vaclav Kotesovec, <a href="/A066897/b066897.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%F A066897 a(n) = Sum_{k=1..n} b(k)*numbpart(n-k), where b(k)=A001227(k)=number of odd divisors of k and numbpart() is A000041. - _Vladeta Jovovic_, Jan 26 2002
%F A066897 a(n) = Sum_{k=0..n} k*A103919(n,k). - _Emeric Deutsch_, Mar 13 2006
%F A066897 G.f.: Sum_{j>=1}(x^(2j-1)/(1-x^(2j-1)))/Product_{j>=1}(1-x^j). - _Emeric Deutsch_, Mar 13 2006
%F A066897 a(n) = A066898(n) + A209423(n) = A006128(n) - A066898(n). [_Reinhard Zumkeller_, Mar 09 2012]
%F A066897 a(n) = A207381(n) - A207382(n). - _Omar E. Pol_, Mar 11 2012
%F A066897 a(n) = (A006128(n) + A209423(n))/2. - _Vaclav Kotesovec_, May 25 2018
%F A066897 a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(24*n/Pi^2)) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 25 2018
%e A066897 a(4) = 8 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], we have a total of 0+2+0+2+4=8 odd parts.
%p A066897 g:=sum(x^(2*j-1)/(1-x^(2*j-1)),j=1..70)/product(1-x^j,j=1..70): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..44);
%p A066897 # _Emeric Deutsch_, Mar 13 2006
%p A066897 b:= proc(n, i) option remember; local f, g;
%p A066897       if n=0 or i=1 then [1, n]
%p A066897     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A066897          [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
%p A066897       fi
%p A066897     end:
%p A066897 a:= n-> b(n, n)[2]:
%p A066897 seq(a(n), n=1..50);
%p A066897 # _Alois P. Heinz_, Mar 22 2012
%t A066897 f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
%t A066897 o[n_] := Sum[f[n, i], {i, 1, n, 2}]
%t A066897 e[n_] := Sum[f[n, i], {i, 2, n, 2}]
%t A066897 Table[o[n], {n, 1, 45}]  (* A066897 *)
%t A066897 Table[e[n], {n, 1, 45}]  (* A066898 *)
%t A066897 %% - %                   (* A209423 *)
%t A066897 (* _Clark Kimberling_, Mar 08 2012 *)
%t A066897 b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 26 2015, after _Alois P. Heinz_ *)
%o A066897 (Haskell)
%o A066897 a066897 = p 0 1 where
%o A066897    p o _             0 = o
%o A066897    p o k m | m < k     = 0
%o A066897            | otherwise = p (o + mod k 2) k (m - k) + p o (k + 1) m
%o A066897 -- _Reinhard Zumkeller_, Mar 09 2012
%o A066897 (Haskell)
%o A066897 a066897 = length . filter odd . concat . ps 1 where
%o A066897    ps _ 0 = [[]]
%o A066897    ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
%o A066897 -- _Reinhard Zumkeller_, Jul 13 2013
%Y A066897 Cf. A000041, A001227, A001620, A002865, A006128, A060831, A066898, A066966, A066967, A103919, A206563, A207381, A207382, A209423, A338156.
%K A066897 easy,nonn
%O A066897 1,2
%A A066897 _Naohiro Nomoto_, Jan 24 2002
%E A066897 More terms from _Vladeta Jovovic_, Jan 26 2002