cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066898 Total number of even parts in all partitions of n.

This page as a plain text file.
%I A066898 #58 Jan 08 2025 05:48:19
%S A066898 0,1,1,4,5,11,15,28,38,62,85,131,177,258,346,489,648,890,1168,1572,
%T A066898 2042,2699,3475,4532,5783,7446,9430,12017,15106,19073,23815,29827,
%U A066898 37011,46012,56765,70116,86033,105627,128962,157476,191359,232499,281286,340180,409871
%N A066898 Total number of even parts in all partitions of n.
%C A066898 Also sum of all even-indexed parts minus the sum of all odd-indexed parts, except the largest parts, of all partitions of n (cf. A206563). - _Omar E. Pol_, Feb 14 2012
%C A066898 From _Omar E. Pol_, Apr 06 2023: (Start)
%C A066898 Convolution of A000041 and A183063.
%C A066898 Convolution of A002865 and A362059.
%C A066898 a(n) is also the total number of even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)
%H A066898 Vaclav Kotesovec, <a href="/A066898/b066898.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%H A066898 P. J. Grabner and A. Knopfmacher, <a href="https://www.math.tugraz.at/fosp/pdfs/tugraz_0087.pdf">Analysis of some new partition statistics</a>, Ramanujan J., 12, 2006, 439-454.
%F A066898 a(n) = Sum_{k=1..floor(n/2)} tau(k)*numbpart(n-2*k). - _Vladeta Jovovic_, Jan 26 2002
%F A066898 a(n) = Sum_{k=0..floor(n/2)} k*A116482(n,k). - _Emeric Deutsch_, Feb 17 2006
%F A066898 G.f.: (Sum_{j>=1} x^(2*j)/(1-x^(2*j)))/(Product_{j>=1} (1-x^j)). - _Emeric Deutsch_, Feb 17 2006
%F A066898 a(n) = A066897(n) - A209423(n) = A006128(n) - A066897(n). - _Reinhard Zumkeller_, Mar 09 2012
%F A066898 a(n) = (A006128(n) - A209423(n))/2. - _Vaclav Kotesovec_, May 25 2018
%F A066898 a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 25 2018
%e A066898 a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
%p A066898 g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # _Emeric Deutsch_, Feb 17 2006
%p A066898 A066898 := proc(n)
%p A066898     add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;
%p A066898 end proc: # _R. J. Mathar_, Jun 18 2016
%t A066898 f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
%t A066898 o[n_] := Sum[f[n, i], {i, 1, n, 2}]
%t A066898 e[n_] := Sum[f[n, i], {i, 2, n, 2}]
%t A066898 Table[o[n], {n, 1, 45}]  (* A066897 *)
%t A066898 Table[e[n], {n, 1, 45}]  (* A066898 *)
%t A066898 %% - %                   (* A209423 *)
%t A066898 (* _Clark Kimberling_, Mar 08 2012 *)
%t A066898 a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Aug 31 2016, after _Vladeta Jovovic_ *)
%o A066898 (Haskell)
%o A066898 a066898 = p 0 1 where
%o A066898    p e _             0 = e
%o A066898    p e k m | m < k     = 0
%o A066898            | otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
%o A066898 -- _Reinhard Zumkeller_, Mar 09 2012
%o A066898 (Haskell)
%o A066898 a066898 = length . filter even . concat . ps 1 where
%o A066898    ps _ 0 = [[]]
%o A066898    ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
%o A066898 -- _Reinhard Zumkeller_, Jul 13 2013
%Y A066898 Cf. A000005, A000041, A002865, A006128, A066897, A116482, A183063, A206563, A209423, A362059.
%Y A066898 Column 2 of A206563.
%K A066898 easy,nonn
%O A066898 1,4
%A A066898 _Naohiro Nomoto_, Jan 24 2002
%E A066898 More terms from _Vladeta Jovovic_, Jan 26 2002