A066907 Number of elements in GL(2,Z_n) x with x^2 == I mod n where I is the identity matrix.
1, 4, 14, 28, 32, 56, 58, 176, 110, 128, 134, 392, 184, 232, 448, 608, 308, 440, 382, 896, 812, 536, 554, 2464, 752, 736, 974, 1624, 872, 1792, 994, 2336, 1876, 1232, 1856, 3080, 1408, 1528, 2576, 5632, 1724, 3248, 1894, 3752, 3520, 2216, 2258, 8512, 2746
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^(2*e-1)*(p+1) + 2; f[2, e_] := 9*4^(e-1)+32; f[2, 1] = 4; f[2, 2] = 28; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
-
PARI
a(n)=my(o=valuation(n,2),f=factor(n>>o)); prod(i=1,#f[,1],f[i,1]^(2*f[i,2])+f[i,1]^(2*f[i,2]-1)+2)*if(o, if(o>1, if(o>2, 9*4^(o-1)+32,28),4),1) \\ Charles R Greathouse IV, May 29 2013
Formula
a(n) = A066947(n) + 1.
a(n) is multiplicative and for an odd prime power p^k : a(p^k) = 2 + p^(2k-1)(p+1). [corrected by Felix A. Pahl, Mar 08 2013]
From Amiram Eldar, Nov 03 2023: (Start)
Dirichlet g.f.: ((1+1/2^s+7/2^(2*s-1)+5/2^(3*s-4))/(1+5/2^s)) * (zeta(s)*zeta(s-2)/zeta(s-1)) * Product_{p prime} (1 + 2/p^(s-1) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (4*zeta(3)/13) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 2/p^4 - 1/p^5) = 0.55646002711570137209... . (End)
Extensions
Added more terms (from A066947), Joerg Arndt, Mar 08 2013
Comments