cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066907 Number of elements in GL(2,Z_n) x with x^2 == I mod n where I is the identity matrix.

Original entry on oeis.org

1, 4, 14, 28, 32, 56, 58, 176, 110, 128, 134, 392, 184, 232, 448, 608, 308, 440, 382, 896, 812, 536, 554, 2464, 752, 736, 974, 1624, 872, 1792, 994, 2336, 1876, 1232, 1856, 3080, 1408, 1528, 2576, 5632, 1724, 3248, 1894, 3752, 3520, 2216, 2258, 8512, 2746
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 26 2002

Keywords

Comments

Number of involutory matrices mod n. - Charles R Greathouse IV, May 29 2013

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-1)*(p+1) + 2; f[2, e_] := 9*4^(e-1)+32; f[2, 1] = 4; f[2, 2] = 28; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
  • PARI
    a(n)=my(o=valuation(n,2),f=factor(n>>o)); prod(i=1,#f[,1],f[i,1]^(2*f[i,2])+f[i,1]^(2*f[i,2]-1)+2)*if(o, if(o>1, if(o>2, 9*4^(o-1)+32,28),4),1) \\ Charles R Greathouse IV, May 29 2013

Formula

a(n) = A066947(n) + 1.
a(n) is multiplicative and for an odd prime power p^k : a(p^k) = 2 + p^(2k-1)(p+1). [corrected by Felix A. Pahl, Mar 08 2013]
From Amiram Eldar, Nov 03 2023: (Start)
Dirichlet g.f.: ((1+1/2^s+7/2^(2*s-1)+5/2^(3*s-4))/(1+5/2^s)) * (zeta(s)*zeta(s-2)/zeta(s-1)) * Product_{p prime} (1 + 2/p^(s-1) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (4*zeta(3)/13) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 2/p^4 - 1/p^5) = 0.55646002711570137209... . (End)

Extensions

Added more terms (from A066947), Joerg Arndt, Mar 08 2013