cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066933 Determinant of n X n matrix whose rows are cyclic permutations of 2..prime(n).

This page as a plain text file.
%I A066933 #18 Jun 12 2022 06:42:57
%S A066933 1,2,-5,-70,1275,97748,-2713585,-251983958,9651414311,1137214908700,
%T A066933 -268100912462097,-16553358418854560,4303513869962179379,
%U A066933 602501593820064477686,-50199332236439321779977,-7847812115804566640572424,2754406130856424049914030863
%N A066933 Determinant of n X n matrix whose rows are cyclic permutations of 2..prime(n).
%H A066933 Alois P. Heinz, <a href="/A066933/b066933.txt">Table of n, a(n) for n = 0..300</a>
%F A066933 Conjecture: a(n) = (-1)^(n+floor(n/2))*Res(f(n) , x^n - 1), where Res is the resultant, and f(n)=Sum_{k=1..n} prime(k)*x^k. - _Benedict W. J. Irwin_, Dec 07 2016
%e A066933 a(3) = -70 because this is the determinant of [(2,3,5), (3,5,2), (5,2,3)].
%p A066933 a:= n-> LinearAlgebra[Determinant](Matrix(n,
%p A066933        (i, j)-> ithprime(1+irem(i+j-2, n)))):
%p A066933 seq(a(n), n=0..20);  # _Alois P. Heinz_, Dec 09 2016
%t A066933 f[ n_ ] := Module[ {a = Table[ Prime[ i ], {i, 1, n} ], m = {}, k = 0}, While[ k < n, m = Append[ m, RotateLeft[ a, k ] ]; k++ ]; Det[ m ] ]; Table[ f[ n ], {n, 1, 16} ]
%o A066933 (PARI) a(n) = matdet(matrix(n, n, i, j, prime(1+lift(Mod(i+j-2, n))))); \\ _Michel Marcus_, Aug 11 2019; corrected Jun 12 2022
%Y A066933 Cf. A052182.
%K A066933 easy,sign
%O A066933 0,2
%A A066933 _Robert G. Wilson v_, Jan 24 2002
%E A066933 a(0)=1 prepended by _Alois P. Heinz_, Dec 09 2016