cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066966 Total sum of even parts in all partitions of n.

This page as a plain text file.
%I A066966 #58 Jan 08 2025 02:19:10
%S A066966 0,2,2,10,12,30,40,82,110,190,260,422,570,860,1160,1690,2252,3170,
%T A066966 4190,5760,7540,10142,13164,17450,22442,29300,37410,48282,61170,78132,
%U A066966 98310,124444,155582,195310,242722,302570,373882,462954,569130,700570,856970
%N A066966 Total sum of even parts in all partitions of n.
%C A066966 Partial sums of A206436. - _Omar E. Pol_, Mar 17 2012
%C A066966 From _Omar E. Pol_, Apr 02 2023: (Start)
%C A066966 Convolution of A000041 and A146076.
%C A066966 Convolution of A002865 and A271342.
%C A066966 a(n) is also the sum of all even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)
%H A066966 Alois P. Heinz, <a href="/A066966/b066966.txt">Table of n, a(n) for n = 1..1000</a>
%H A066966 George E. Andrews and Mircea Merca, <a href="https://doi.org/10.1016/j.jcta.2023.105849">A further look at the sum of the parts with the same parity in the partitions of n</a>, Journal of Combinatorial Theory, Series A, Volume 203, 105849 (2024).
%F A066966 a(n) = 2*Sum_{k=1..floor(n/2)} sigma(k)*numbpart(n-2*k).
%F A066966 a(n) = Sum_{k=0..n} k*A113686(n,k). - _Emeric Deutsch_, Feb 20 2006
%F A066966 G.f.: Sum_{j>=1} (2jx^(2j)/(1-x^(2j)))/Product_{j>=1}(1-x^j). - _Emeric Deutsch_, Feb 20 2006
%F A066966 a(n) = A066186(n) - A066967(n). - _Omar E. Pol_, Mar 10 2012
%F A066966 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - _Vaclav Kotesovec_, May 29 2018
%e A066966 a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.
%p A066966 g:=sum(2*j*x^(2*j)/(1-x^(2*j)),j=1..55)/product(1-x^j,j=1..55): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..41);
%p A066966 # _Emeric Deutsch_, Feb 20 2006
%p A066966 b:= proc(n, i) option remember; local f, g;
%p A066966       if n=0 or i=1 then [1, 0]
%p A066966     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A066966          [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]
%p A066966       fi
%p A066966     end:
%p A066966 a:= n-> b(n, n)[2]:
%p A066966 seq(a(n), n=1..50);
%p A066966 # _Alois P. Heinz_, Mar 22 2012
%t A066966 max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* _Jean-François Alcover_, Jan 24 2014, after _Emeric Deutsch_ *)
%t A066966 Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* _Peter J. C. Moses_, Mar 14 2014 *)
%o A066966 (PARI) a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ _Joerg Arndt_, Jan 24 2014
%Y A066966 Cf. A000041, A000203, A002865, A066186, A066897, A066898, A066967, A113686, A146076, A206436, A271342, A338156.
%K A066966 nonn
%O A066966 1,2
%A A066966 _Vladeta Jovovic_, Jan 26 2002
%E A066966 More terms from _Naohiro Nomoto_ and _Sascha Kurz_, Feb 07 2002
%E A066966 More terms from _Emeric Deutsch_, Feb 20 2006