cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066967 Total sum of odd parts in all partitions of n.

This page as a plain text file.
%I A066967 #54 Dec 12 2023 08:18:39
%S A066967 1,2,7,10,23,36,65,94,160,230,356,502,743,1030,1480,2006,2797,3760,
%T A066967 5120,6780,9092,11902,15701,20350,26508,34036,43860,55822,71215,89988,
%U A066967 113792,142724,179137,223230,278183,344602,426687,525616,647085,792950
%N A066967 Total sum of odd parts in all partitions of n.
%C A066967 Partial sums of A206435. - _Omar E. Pol_, Mar 17 2012
%C A066967 From _Omar E. Pol_, Apr 01 2023: (Start)
%C A066967 Convolution of A000041 and A000593.
%C A066967 Convolution of A002865 and A078471.
%C A066967 a(n) is also the sum of all odd divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned odd divisors are also all odd parts of all partitions of n. (End)
%H A066967 Vaclav Kotesovec, <a href="/A066967/b066967.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%H A066967 George E. Andrews and Mircea Merca, <a href="https://doi.org/10.1016/j.jcta.2023.105849">A further look at the sum of the parts with the same parity in the partitions of n</a>, Journal of Combinatorial Theory, Series A, Volume 203, 105849 (2024).
%F A066967 a(n) = Sum_{k=1..n} b(k)*numbpart(n-k), where b(k)=A000593(k)=sum of odd divisors of k.
%F A066967 a(n) = sum(k*A113685(n,k), k=0..n). - _Emeric Deutsch_, Feb 19 2006
%F A066967 G.f.: sum((2i-1)x^(2i-1)/(1-x^(2i-1)), i=1..infinity)/product(1-x^j, j=1..infinity). - _Emeric Deutsch_, Feb 19 2006
%F A066967 a(n) = A066186(n) - A066966(n). - _Omar E. Pol_, Mar 10 2012
%F A066967 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - _Vaclav Kotesovec_, May 29 2018
%e A066967 a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the odd parts is (3+1)+(1+1)+(1+1+1+1) = 10.
%p A066967 g:=sum((2*i-1)*x^(2*i-1)/(1-x^(2*i-1)),i=1..50)/product(1-x^j,j=1..50): gser:=series(g,x=0,50): seq(coeff(gser,x^n),n=1..47);
%p A066967 # _Emeric Deutsch_, Feb 19 2006
%p A066967 b:= proc(n, i) option remember; local f, g;
%p A066967       if n=0 or i=1 then [1, n]
%p A066967     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A066967          [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]*i]
%p A066967       fi
%p A066967     end:
%p A066967 a:= n-> b(n, n)[2]:
%p A066967 seq (a(n), n=1..50);
%p A066967 # _Alois P. Heinz_, Mar 22 2012
%t A066967 max = 50; g = Sum[(2*i-1)*x^(2*i-1)/(1-x^(2*i-1)), {i, 1, max}]/Product[1-x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max-1}] (* _Jean-François Alcover_, Jan 24 2014, after _Emeric Deutsch_ *)
%t A066967 Map[Total[Select[Flatten[IntegerPartitions[#]], OddQ]] &, Range[30]] (* _Peter J. C. Moses_, Mar 14 2014 *)
%Y A066967 Cf. A000041, A000593, A066897, A066898, A113685, A206435.
%Y A066967 Cf. A002865, A078471.
%K A066967 nonn
%O A066967 1,2
%A A066967 _Vladeta Jovovic_, Jan 26 2002
%E A066967 More terms from _Naohiro Nomoto_ and _Sascha Kurz_, Feb 07 2002