cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066982 a(n) = Lucas(n+1) - (n+1).

This page as a plain text file.
%I A066982 #46 Dec 09 2024 23:23:13
%S A066982 1,1,3,6,12,22,39,67,113,188,310,508,829,1349,2191,3554,5760,9330,
%T A066982 15107,24455,39581,64056,103658,167736,271417,439177,710619,1149822,
%U A066982 1860468,3010318,4870815,7881163,12752009,20633204,33385246,54018484,87403765,141422285
%N A066982 a(n) = Lucas(n+1) - (n+1).
%C A066982 From _Gus Wiseman_, Feb 12 2019: (Start)
%C A066982 Also the number of ways to split an (n + 1)-cycle into nonempty connected subgraphs with no singletons. For example, the a(1) = 1 through a(5) = 12 partitions are:
%C A066982   {{12}}  {{123}}  {{1234}}    {{12345}}    {{123456}}
%C A066982                    {{12}{34}}  {{12}{345}}  {{12}{3456}}
%C A066982                    {{14}{23}}  {{123}{45}}  {{123}{456}}
%C A066982                                {{125}{34}}  {{1234}{56}}
%C A066982                                {{145}{23}}  {{1236}{45}}
%C A066982                                {{15}{234}}  {{1256}{34}}
%C A066982                                             {{126}{345}}
%C A066982                                             {{1456}{23}}
%C A066982                                             {{156}{234}}
%C A066982                                             {{16}{2345}}
%C A066982                                             {{12}{34}{56}}
%C A066982                                             {{16}{23}{45}}
%C A066982 Also the number of non-singleton subsets of {1, ..., (n + 1)} with no cyclically successive elements (cyclically successive means 1 succeeds n + 1). For example, the a(1) = 1 through a(5) = 12 subsets are:
%C A066982   {}  {}  {}     {}     {}
%C A066982           {1,3}  {1,3}  {1,3}
%C A066982           {2,4}  {1,4}  {1,4}
%C A066982                  {2,4}  {1,5}
%C A066982                  {2,5}  {2,4}
%C A066982                  {3,5}  {2,5}
%C A066982                         {2,6}
%C A066982                         {3,5}
%C A066982                         {3,6}
%C A066982                         {4,6}
%C A066982                         {1,3,5}
%C A066982                         {2,4,6}
%C A066982 (End)
%H A066982 Harry J. Smith, <a href="/A066982/b066982.txt">Table of n, a(n) for n = 1..250</a>
%H A066982 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-1,1).
%F A066982 a(1) = a(2) = 1, a(n + 2) = a(n + 1) + a(n) + n.
%F A066982 For n > 2, a(n) = floor(phi^(n+1) - (n+1)) + (1-(-1)^n)/2.
%F A066982 From _Colin Barker_, Jun 30 2012: (Start)
%F A066982 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
%F A066982 G.f.: x*(1-2*x+2*x^2)/((1-x)^2*(1-x-x^2)). (End)
%F A066982 a(n) is the sum of the n-th antidiagonal of A352744 (assuming offset 0). - _Peter Luschny_, Nov 16 2023
%t A066982 a[1]=a[2]=1; a[n_]:= a[n] = a[n-1] +a[n-2] +n-2; Table[a[n], {n, 40}]
%t A066982 LinearRecurrence[{3, -2, -1, 1}, {1, 1, 3, 6}, 40] (* _Vladimir Joseph Stephan Orlovsky_, Feb 13 2012 *)
%t A066982 Table[LucasL[n+1]-n-1, {n, 40}] (* _Vladimir Reshetnikov_, Sep 15 2016 *)
%t A066982 CoefficientList[Series[(1-2*x+2*x^2)/((1-x)^2*(1-x-x^2)), {x, 0, 40}], x] (* _L. Edson Jeffery_, Sep 28 2017 *)
%o A066982 (PARI) vector(40, n, my(f=fibonacci); f(n+2)+f(n)-n-1) \\ _G. C. Greubel_, Jul 09 2019
%o A066982 (Magma) [Lucas(n+1)-n-1: n in [1..40]]; // _G. C. Greubel_, Jul 09 2019
%o A066982 (Sage) [lucas_number2(n+1,1,-1) -n-1 for n in (1..40)] # _G. C. Greubel_, Jul 09 2019
%o A066982 (GAP) List([1..40], n-> Lucas(1,-1,n+1)[2] -n-1); # _G. C. Greubel_, Jul 09 2019
%Y A066982 Cf. A000032, A000045, A000126, A000325, A005251, A169985, A323953, A323954, A352744.
%K A066982 nonn,easy
%O A066982 1,3
%A A066982 _Benoit Cloitre_, Jan 27 2002
%E A066982 Corrected and extended by _Harvey P. Dale_, Feb 08 2002