This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066990 #36 Jun 03 2025 11:25:56 %S A066990 1,2,3,4,5,6,7,2,9,10,11,12,13,14,15,4,17,18,19,20,21,22,23,6,25,26,3, %T A066990 28,29,30,31,2,33,34,35,36,37,38,39,10,41,42,43,44,45,46,47,12,49,50, %U A066990 51,52,53,6,55,14,57,58,59,60,61,62,63,4,65,66,67,68,69 %N A066990 In canonical prime factorization of n replace even exponents with 2 and odd exponents with 1. %C A066990 a(n) = n for cubefree numbers (A004709), whereas a(n) <> n for cube-full numbers (A046099). %C A066990 The largest exponential divisor (A322791) of n that is cubefree (A004709). - _Amiram Eldar_, Jun 03 2025 %H A066990 Reinhard Zumkeller, <a href="/A066990/b066990.txt">Table of n, a(n) for n = 1..10000</a> %H A066990 Brahim Mittou, <a href="https://www.montis.pmf.ac.me/allissues/53/Mathematica-Montisnigri-53-1.pdf">New properties of an arithmetic function</a>, Mathematica Montisnigri, Vol LIII (2022), pp. 5-11. %H A066990 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Cubefree.html">Cubefree</a>. %F A066990 Multiplicative with a(p^e) = p^(2 - e mod 2), p prime, e>0. %F A066990 Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 0.4296463408... . - _Amiram Eldar_, Oct 28 2022 %t A066990 fx[{a_,b_}]:={a,If[EvenQ[b],2,1]}; Table[Times@@(#[[1]]^#[[2]]&/@(fx/@ FactorInteger[n])),{n,70}] (* _Harvey P. Dale_, Jan 01 2012 *) %o A066990 (Haskell) %o A066990 a066990 n = product $ zipWith (^) %o A066990 (a027748_row n) (map ((2 -) . (`mod` 2)) $ a124010_row n) %o A066990 -- _Reinhard Zumkeller_, Dec 02 2012 %o A066990 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2 - f[i,2]%2));} \\ _Amiram Eldar_, Oct 28 2022 %o A066990 (Python) %o A066990 from math import prod %o A066990 from sympy import factorint %o A066990 def a(n): return prod(p**(2-(e&1)) for p, e in factorint(n).items()) %o A066990 print([a(n) for n in range(1, 70)]) # _Michael S. Branicky_, Jun 03 2025 %Y A066990 Cf. A004709, A046099, A322791. %K A066990 nonn,nice,mult,easy %O A066990 1,2 %A A066990 _Reinhard Zumkeller_, Feb 01 2002