This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067005 #39 Mar 09 2025 05:12:09 %S A067005 1,1,2,1,2,1,4,1,2,1,2,1,4,2,2,1,6,1,10,1,2,1,2,1,4,2,2,1,2,1,10,1,2, %T A067005 3,2,1,4,5,2,1,2,1,4,1,4,1,6,1,4,2,2,1,2,1,2,1,4,1,12,1,6,5,2,1,2,1,4, %U A067005 2,2,1,8,1,4,2,2,3,6,1,4,1,2,1,2,1,12,2,4,1,2,2,6,1,4,3,2,1,4,2,2,1 %N A067005 Totient of A061026(n) divided by n. %H A067005 Amiram Eldar, <a href="/A067005/b067005.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Zak Seidov) %F A067005 a(n) = A000010(A061026(n))/n. %F A067005 a(n) = A066678(n)/n. - _Amiram Eldar_, Mar 08 2025 %e A067005 n = 24: a(24) = 1 = phi(A061026(24))/24 = phi(35)/24 = 24/24; %e A067005 n = 85: a(85) = 12 = phi(A061026(85))/85 = 1020/85. %t A067005 Table[m = 1; While[! Divisible[Set[k, EulerPhi@ m], n], m++]; k/n, {n, 100}] (* _Michael De Vlieger_, Mar 18 2017 *) %o A067005 (PARI) for(n=1,100, s=1; while((e=eulerphi(s))%n>0, s++); print1(e/n ", ")); \\ _Zak Seidov_, Feb 22 2014 %o A067005 (PARI) list(len) = {my(v = vector(len), c = 0, k = 1, e); while(c < len, e = eulerphi(k); fordiv(e, d, if(d <= len && v[d] == 0, v[d] = e/d; c++)); k++); v; } \\ _Amiram Eldar_, Mar 08 2025 %o A067005 (Python) %o A067005 from sympy.ntheory import totient %o A067005 def k(n): %o A067005 m=1 %o A067005 while totient(m)%n: m+=1 %o A067005 return m %o A067005 print([totient(k(n))//n for n in range(1, 101)]) # _Indranil Ghosh_, Mar 18 2017 %Y A067005 Cf. A000010, A061026, A066674, A066675, A066676, A066677, A066678. %K A067005 nonn %O A067005 1,3 %A A067005 _Labos Elemer_, Dec 22 2001