This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067029 #64 Jun 15 2025 11:28:08 %S A067029 0,1,1,2,1,1,1,3,2,1,1,2,1,1,1,4,1,1,1,2,1,1,1,3,2,1,3,2,1,1,1,5,1,1, %T A067029 1,2,1,1,1,3,1,1,1,2,2,1,1,4,2,1,1,2,1,1,1,3,1,1,1,2,1,1,2,6,1,1,1,2, %U A067029 1,1,1,3,1,1,1,2,1,1,1,4,4,1,1,2,1,1,1,3,1,1 %N A067029 Exponent of least prime factor in prime factorization of n, a(1)=0. %C A067029 Even bisection is A001511: a(2n) = A007814(n) + 1. - _Ralf Stephan_, Jan 31 2004 %C A067029 Number of occurrences of the smallest part in the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} (p_j-th prime) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). Example: a(24)=3 because the partition with Heinz number 24 = 3*2*2*2 is [2,1,1,1]. - _Emeric Deutsch_, Oct 02 2015 %C A067029 Together with A028234 is useful for defining sequences that are multiplicative with a(p^e) = f(e), as recurrences of the form: a(1) = 1 and for n > 1, a(n) = f(A067029(n)) * a(A028234(n)). - _Antti Karttunen_, May 29 2017 %H A067029 T. D. Noe, <a href="/A067029/b067029.txt">Table of n, a(n) for n = 1..10000</a> %H A067029 Project Euler, <a href="https://projecteuler.net/problem=779">Problem 779: Prime factor and exponent</a>, (2022). %F A067029 a(n) = A124010(n,1). - _Reinhard Zumkeller_, Aug 27 2011 %F A067029 A028233(n) = A020639(n)^a(n). - _Reinhard Zumkeller_, May 13 2006 %F A067029 a(A247180(n)) = 1. - _Reinhard Zumkeller_, Nov 23 2014 %F A067029 Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (Product_{i=1..k-1} (1 - 1/prime(i)))/(prime(k)-1) = 1/(prime(1)-1) + (1-1/prime(1))*(1/(prime(2)-1) + (1-1/prime(2))*(1/(prime(3)-1) + (1-1/prime(3))*( ... ))) = 1.6125177915... - _Amiram Eldar_, Oct 26 2021 %e A067029 a(18) = a(2^1 * 3^2) = 1. %p A067029 A067029 := proc(n) %p A067029 local f,lp,a; %p A067029 a := 0 ; %p A067029 lp := n+1 ; %p A067029 for f in ifactors(n)[2] do %p A067029 p := op(1,f) ; %p A067029 if p < lp then %p A067029 a := op(2,f) ; %p A067029 lp := p; %p A067029 fi; %p A067029 end do: %p A067029 a ; %p A067029 end proc: # _R. J. Mathar_, Jul 08 2015 %p A067029 seq(ifelse(n = 1, 0, ifactors(n)[2][1][2]), n = 1..90); # _Peter Luschny_, Jun 15 2025 %t A067029 Join[{0},Table[FactorInteger[n][[1,2]],{n,2,100}]] (* _Harvey P. Dale_, Oct 14 2011 *) %o A067029 (Haskell) %o A067029 a067029 = head . a124010_row %o A067029 -- _Reinhard Zumkeller_, Jul 05 2013, Jun 04 2012 %o A067029 (Python) %o A067029 from sympy import factorint %o A067029 def a(n): %o A067029 f=factorint(n) %o A067029 return 0 if n==1 else f[min(f)] # _Indranil Ghosh_, May 15 2017 %o A067029 (PARI) a(n) = if (n==1, 0, factor(n)[1,2]); \\ _Michel Marcus_, May 15 2017 %o A067029 (Scheme) %o A067029 ;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme %o A067029 (define (A067029 n) (if (< n 2) 0 (let ((mp (A020639 n))) (let loop ((e 0) (n (/ n mp))) (cond ((integer? n) (loop (+ e 1) (/ n mp))) (else e)))))) ;; _Antti Karttunen_, May 29 2017 %Y A067029 Cf. A051903, A020639, A028233, A034684, A071178, first column of A124010, A247180. %K A067029 nonn,nice %O A067029 1,4 %A A067029 _Reinhard Zumkeller_, Feb 17 2002