This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067075 #40 Jun 21 2024 03:50:39 %S A067075 0,1,2,27,1192,341075,3848163483,2064403725539899 %N A067075 a(n) is the smallest number m such that the sum of the digits of m^3 is equal to n^3. %C A067075 If n = 6*k, a(n) <= A002283(n^3/18). For example, a(6) = 3848163483 <= A002283(6^3/18) = 999999999999. - _Seiichi Manyama_, Aug 12 2017 %C A067075 a(n) >= ceiling(A051885(n^3)^(1/3)). For example a(7) >= ceiling(A051885(7^3)^(1/3)) = ceiling((2*10^38-1)^(1/3)) = 5848035476426 - _David A. Corneth_, Aug 23 2018 %C A067075 From _Zhining Yang_, Jun 20 2024: (Start) %C A067075 a(8) <= 99995999799995999999999. %C A067075 a(9) <= 999699989999999949999999999999999. %C A067075 a(10) <= 199999999929999999999949999999999999999999999. %C A067075 (End) %e A067075 a(3) = 27 as 27^3 = 19683 is the smallest cube whose digit sum = 27 = 3^3. %t A067075 Do[k = 1; While[Plus @@ IntegerDigits[k^3] != n^3, k++ ]; Print[k], {n, 1, 6}] (* _Ryan Propper_, Jul 07 2005 *) %o A067075 (PARI) a(n) = my(k=0); while (sumdigits(k^3) != n^3, k++); k; \\ _Seiichi Manyama_, Aug 12 2017 %Y A067075 Cf. A051885, A061912, A067074. Subsequence of A067177. %K A067075 nonn,base,more %O A067075 0,3 %A A067075 _Amarnath Murthy_, Jan 05 2002 %E A067075 Corrected and extended by _Ryan Propper_, Jul 07 2005 %E A067075 a(0)=0 prepended by _Seiichi Manyama_, Aug 12 2017 %E A067075 a(7) from _Zhining Yang_, Jun 20 2024