cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067077 Numbers whose product of distinct prime factors is equal to its sum of digits.

This page as a plain text file.
%I A067077 #21 Dec 05 2024 14:46:03
%S A067077 1,2,3,5,6,7,24,375,392,640,2401,4802,4913,6400,7744,17576,42592,
%T A067077 64000,106496,234256,295936,468750,546875,628864,640000,877952,
%U A067077 1124864,1966080,2839714,3687936,4687500,4816896,4952198,6400000,6453888
%N A067077 Numbers whose product of distinct prime factors is equal to its sum of digits.
%C A067077 The product of the distinct prime factors of n (the squarefree kernel of n) is also denoted by rad(n) = A007947(n). - _Giovanni Resta_, Apr 21 2017
%H A067077 Giovanni Resta, <a href="/A067077/b067077.txt">Table of n, a(n) for n = 1..10000</a> (first 71 terms from Harry J. Smith)
%e A067077 The prime factors of 375 are 3,5, which have product = 15, the sum of the digits of 375, so 375 is a term of the sequence.
%t A067077 f[n_] := Times@@ (First/@ FactorInteger[n]); g[n_] := Plus @@ IntegerDigits[n]; Select[Range[10^5], f[#] == g[#] &] (* or *)
%t A067077 nd=12; up=10^nd; L={1}; Do[If[SquareFreeQ[su], ps = First /@ FactorInteger[su]; nps = Length@ ps; Clear[ric]; ric[n_, i_] := Block[{e = 0, m}, If[i > nps, If[Plus @@ IntegerDigits[su n] == su, Sow[su n]], While[ (m = n ps[[i]]^e ) su < up, ric[m, i+1]; e++]]]; z = Reap[ ric[1, 1]][[2]]; If[z != {}, L = Union[L, z[[1]]]]], {su, 2, 9 nd}]; L (* fast, terms < 10^12, _Giovanni Resta_, Apr 21 2017 *)
%t A067077 Select[Range[65*10^5],Times@@FactorInteger[#][[All,1]]==Total[ IntegerDigits[ #]]&] (* _Harvey P. Dale_, Dec 16 2018 *)
%o A067077 (PARI) isok(k)={vecprod(factor(k)[,1]) == sumdigits(k)} \\ _Harry J. Smith_, May 06 2010
%Y A067077 Cf. A007947, A006753, A057531, A057532, A050689, A070274, A070275, A063737, A285494.
%K A067077 base,nonn
%O A067077 1,2
%A A067077 _Joseph L. Pe_, Feb 18 2002
%E A067077 a(19)-a(35) from _Donovan Johnson_, Sep 29 2009
%E A067077 a(1)=1 prepended by _Giovanni Resta_, Apr 21 2017