This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067078 #30 Dec 14 2023 09:04:05 %S A067078 1,2,3,5,11,35,155,875,5915,46235,409115,4037915,43954715,522956315, %T A067078 6749977115,93928268315,1401602636315,22324392524315,378011820620315, %U A067078 6780385526348315,128425485935180315,2561327494111820315 %N A067078 a(1) = 1, a(2) = 2, a(n) = (n-1)*a(n-1) - (n-2)*a(n-2). %C A067078 Successive differences are factorials, or (n+1)st successive difference divided by n-th successive difference = n. I.e., {a(n+2)-a(n+1)}/{a(n+1)-a(n)} = n. - _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 14 2003 %C A067078 Equals the row sums of A165680. - _Johannes W. Meijer_, Oct 16 2009 %H A067078 Reinhard Zumkeller, <a href="/A067078/b067078.txt">Table of n, a(n) for n = 1..100</a> %F A067078 a(n) = 1 + Sum_{i=0..n-2} i! = 2*A014288(n-1)+1 = A007489(n-2)+2 (n>1). - _Henry Bottomley_, Oct 23 2002; corrected by _M. F. Hasler_, Dec 16 2007 %F A067078 a(n) = 1+!(n-1) = 1+A003422(n-1); a(n+1)=a(n)+(n-1)!. - _M. F. Hasler_, Dec 16 2007 %F A067078 E.g.f.: A(x)=x*B(x) satisfies the differential equation B'(x)=B(x)+log(1/(1-x))+1. - _Vladimir Kruchinin_, Jan 19 2011 %e A067078 a(6) = 35, a(5)= 11 hence a(7) = 6*35 - 5*11 = 155. %t A067078 a[1] = 1; a[2] = 2; a[n_] := a[n] = (n - 1)*a[n - 1] - (n - 2)*a[n - 2]; Table[ a[n], {n, 1, 25} ] %t A067078 a=FoldList[Plus,2,(Range@40)! ];PrependTo[a,1] (* _Vladimir Joseph Stephan Orlovsky_, May 21 2010 *) %o A067078 (PARI) A067078(n)=sum(k=0, n-2, k!, 1) \\ _M. F. Hasler_, Dec 16 2007 %o A067078 (Haskell) %o A067078 a067078 n = a067078_list !! (n-1) %o A067078 a067078_list = scanl (+) 1 a000142_list %o A067078 -- _Reinhard Zumkeller_, Dec 27 2011 %Y A067078 Cf. A003422, A014288, A007489, A165680. %K A067078 nonn %O A067078 1,2 %A A067078 _Amarnath Murthy_, Jan 05 2002 %E A067078 More terms from _Robert G. Wilson v_, Jan 07 2002 %E A067078 Edited by _M. F. Hasler_, Dec 16 2007