A067094 Floor[X/Y] where X = concatenation in decreasing order of (n+1)-st odd number through the 2n-th odd number and Y = concatenation in increasing order of first n odd numbers.
3, 5, 8, 1115, 141185, 170938, 200692, 230447, 260202, 289956, 319711, 349465, 379220, 408974, 438729, 468483, 498238, 527993, 557747, 587502, 617256, 647011, 676765, 706520, 736274, 7592691, 788748988, 81823548335, 8477219785398
Offset: 1
Examples
a(4)= floor[1513119/1357] =floor[1115.047162859248341930729550479] = 1115.
Links
- Robert Israel, Table of n, a(n) for n = 1..2720
Programs
-
Maple
f:= proc(n) local k; floor(parse(cat(seq(2*k-1,k=2*n .. n+1,-1)))/parse(cat(seq(2*k-1,k=1..n)))) end proc: map(f, [$1..50]); # Robert Israel, Nov 06 2024
-
Mathematica
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[ToString[2n + 2k - 1], x]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]/10]] ); Table[ f[n], {n, 1, 32} ]
Extensions
More terms from Robert G. Wilson v, Jan 09 2002
Definition corrected by Robert Israel, Nov 06 2024