cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067138 OR-numbral multiplication table, read by antidiagonals.

This page as a plain text file.
%I A067138 #22 Mar 17 2021 15:30:14
%S A067138 0,0,0,0,1,0,0,2,2,0,0,3,4,3,0,0,4,6,6,4,0,0,5,8,7,8,5,0,0,6,10,12,12,
%T A067138 10,6,0,0,7,12,15,16,15,12,7,0,0,8,14,14,20,20,14,14,8,0,0,9,16,15,24,
%U A067138 21,24,15,16,9,0,0,10,18,24,28,30,30,28,24,18,10,0,0,11,20,27,32,31,28
%N A067138 OR-numbral multiplication table, read by antidiagonals.
%C A067138 See A048888 for the definition of OR-numbral arithmetic
%H A067138 Antti Karttunen, <a href="/A067138/b067138.txt">Table of n, a(n) for n = 0..10439; the first 144 antidiagonals of square array</a>
%F A067138 From _Rémy Sigrist_, Mar 17 2021: (Start)
%F A067138 T(n, 0) = 0.
%F A067138 T(n, 1) = n.
%F A067138 T(n, 2^k) = n*2^k for any k >= 0.
%F A067138 T(n, n) = A067398(n).
%F A067138 (End)
%F A067138 For all n, k: A048720(n,k) <= A(n,k) <= A004247(n,k). - _Antti Karttunen_, Mar 17 2021
%e A067138 The top left 0..16 x 0..16 corner of the array:
%e A067138   0,  0,  0,  0,  0,  0,  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
%e A067138   0,  1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
%e A067138   0,  2,  4,  6,  8, 10, 12,  14,  16,  18,  20,  22,  24,  26,  28,  30,
%e A067138   0,  3,  6,  7, 12, 15, 14,  15,  24,  27,  30,  31,  28,  31,  30,  31,
%e A067138   0,  4,  8, 12, 16, 20, 24,  28,  32,  36,  40,  44,  48,  52,  56,  60,
%e A067138   0,  5, 10, 15, 20, 21, 30,  31,  40,  45,  42,  47,  60,  61,  62,  63,
%e A067138   0,  6, 12, 14, 24, 30, 28,  30,  48,  54,  60,  62,  56,  62,  60,  62,
%e A067138   0,  7, 14, 15, 28, 31, 30,  31,  56,  63,  62,  63,  60,  63,  62,  63,
%e A067138   0,  8, 16, 24, 32, 40, 48,  56,  64,  72,  80,  88,  96, 104, 112, 120,
%e A067138   0,  9, 18, 27, 36, 45, 54,  63,  72,  73,  90,  91, 108, 109, 126, 127,
%e A067138   0, 10, 20, 30, 40, 42, 60,  62,  80,  90,  84,  94, 120, 122, 124, 126,
%e A067138   0, 11, 22, 31, 44, 47, 62,  63,  88,  91,  94,  95, 124, 127, 126, 127,
%e A067138   0, 12, 24, 28, 48, 60, 56,  60,  96, 108, 120, 124, 112, 124, 120, 124,
%e A067138   0, 13, 26, 31, 52, 61, 62,  63, 104, 109, 122, 127, 124, 125, 126, 127,
%e A067138   0, 14, 28, 30, 56, 62, 60,  62, 112, 126, 124, 126, 120, 126, 124, 126,
%e A067138   0, 15, 30, 31, 60, 63, 62,  63, 120, 127, 126, 127, 124, 127, 126, 127,
%e A067138   0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240,
%e A067138 .
%e A067138 Multiplying 3 ("11" in binary) with itself in this system means taking bitwise-or of "11" with itself, when shifted one bit-position left:
%e A067138        11
%e A067138       110
%e A067138   -------
%e A067138 OR:   111 = 7 in decimal = A(3,3).
%e A067138 .
%e A067138 Multiplying 10 (= "1010" in binary) and 11 (= "1011" in binary) in this system means taking bitwise-or of binary number 1011 when shifted once left with the same binary number when shifted three bit-positions left:
%e A067138       10110
%e A067138     1011000
%e A067138     -------
%e A067138 OR: 1011110 = 94 in decimal = A(10,11) = A(11,10).
%o A067138 (PARI) t(n, k) = {res = 0; for (i=0, length(binary(n))-1, if (bittest(n, i), res = bitor(res, shift(k, i)));); return (res);} \\ _Michel Marcus_, Apr 14 2013
%Y A067138 Cf. A003986, A067139, A048888, A007059, A067398 (main diagonal).
%Y A067138 Cf. also A004247, A048720 for analogous multiplication tables.
%K A067138 nonn,tabl,look
%O A067138 0,8
%A A067138 _Jens Voß_, Jan 02 2002
%E A067138 Example-section rewritten by _Antti Karttunen_, Mar 17 2021