cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067187 Numbers that can be expressed as the sum of two primes in exactly one way.

This page as a plain text file.
%I A067187 #27 Apr 21 2025 17:08:45
%S A067187 4,5,6,7,8,9,12,13,15,19,21,25,31,33,39,43,45,49,55,61,63,69,73,75,81,
%T A067187 85,91,99,103,105,109,111,115,129,133,139,141,151,153,159,165,169,175,
%U A067187 181,183,193,195,199,201,213,225,229,231,235,241,243,253,259,265,271
%N A067187 Numbers that can be expressed as the sum of two primes in exactly one way.
%C A067187 All primes + 2 are terms of this sequence. Is 12 the last even term? - _Frank Ellermann_, Jan 17 2002
%C A067187 A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - _Eric W. Weisstein_, Oct 10 2003
%C A067187 Values of n such that A061358(n)=1. - _Emeric Deutsch_, Apr 03 2006
%H A067187 Robert Price, <a href="/A067187/b067187.txt">Table of n, a(n) for n = 1..5002</a>
%H A067187 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%e A067187 4 is a term as 4 = 2+2, 15 is a term as 15 = 13+2.
%p A067187 g:=sum(sum(x^(ithprime(i)+ithprime(j)),i=1..j),j=1..80): gser:=series(g,x=0,280): a:=proc(n) if coeff(gser,x^n)=1 then n else fi end: seq(a(n),n=1..272); # _Emeric Deutsch_, Apr 03 2006
%t A067187 cQ[n_]:=Module[{c=0},Do[If[PrimeQ[n-i]&&PrimeQ[i],c++],{i,2,n/2}]; c==1]; Select[Range[4,271],cQ[#]&] (* _Jayanta Basu_, May 22 2013 *)
%t A067187 y = Select[Flatten@Table[Prime[i] + Prime[j], {i, 60}, {j, 1, i}], # < Prime[60] &]; Select[Union[y], Count[y, #] == 1 &] (* _Robert Price_, Apr 21 2025 *)
%Y A067187 Cf. A023036, A045917, A061358.
%Y A067187 Subsequence of A014091.
%Y A067187 Numbers that can be expressed as the sum of two primes in k ways for k=0..10: A014092 (k=0), this sequence (k=1), A067188 (k=2), A067189 (k=3), A067190 (k=4), A067191 (k=5), A066722 (k=6), A352229 (k=7), A352230 (k=8), A352231 (k=9), A352233 (k=10).
%K A067187 nonn
%O A067187 1,1
%A A067187 _Amarnath Murthy_, Jan 10 2002
%E A067187 Edited by _Frank Ellermann_, Jan 17 2002