cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067280 Number of terms in continued fraction for sqrt(n), excl. 2nd and higher periods.

This page as a plain text file.
%I A067280 #16 Jun 15 2022 01:49:40
%S A067280 1,2,3,1,2,3,5,3,1,2,3,3,6,5,3,1,2,3,7,3,7,7,5,3,1,2,3,5,6,3,9,5,5,5,
%T A067280 3,1,2,3,3,3,4,3,11,9,7,13,5,3,1,2,3,7,6,7,5,3,7,8,7,5,12,5,3,1,2,3,
%U A067280 11,3,9,7,9,3,8,6,5,13,7,5,5,3,1,2,3,3,6,11,3,7,6,3,9,9,11,17,5,5,12,5
%N A067280 Number of terms in continued fraction for sqrt(n), excl. 2nd and higher periods.
%D A067280 H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th edition, 1999, table 1.
%F A067280 a(n) = A003285(n) + 1. - _Andrey Zabolotskiy_, Jun 23 2020
%e A067280 a(2)=2: [1,(2)+ ]; a(3)=3: [1,(1,2)+ ]; a(4)=1: [2]; a(5)=2: [2,(4)+ ].
%o A067280 (Python)
%o A067280 from sympy import continued_fraction_periodic
%o A067280 def A067280(n): return len((a := continued_fraction_periodic(0,1,n))[:1]+(a[1] if a[1:] else [])) # _Chai Wah Wu_, Jun 14 2022
%Y A067280 Related sequences: 2 : A040000, ..., 44: A040037, 48: A040041, ..., 51: A040043, 56: A040048, 60: A040052, 63: A040055, ..., 66: A040057. 68: A040059, 72: A040063, 80: A040071.
%Y A067280 Related sequences: 45: A010135, ..., 47: A010137, 52: A010138, ..., 55: A010141, 57: A010142, ..., 59: A010144. 61: A010145, 62: A010146. 67: A010147, 69: A010148, ..., 71: A010150.
%Y A067280 Cf. A003285.
%K A067280 nonn,easy
%O A067280 1,2
%A A067280 _Frank Ellermann_, Feb 23 2002
%E A067280 Name clarified by _Michel Marcus_, Jun 22 2020