A067310 Square table read by antidiagonals of number of ways of arranging n chords on a circle with k simple intersections (i.e., no intersections with 3 or more chords).
1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 6, 14, 0, 0, 0, 3, 28, 42, 0, 0, 0, 1, 28, 120, 132, 0, 0, 0, 0, 20, 180, 495, 429, 0, 0, 0, 0, 10, 195, 990, 2002, 1430, 0, 0, 0, 0, 4, 165, 1430, 5005, 8008, 4862, 0, 0, 0, 0, 1, 117, 1650, 9009, 24024, 31824, 16796, 0, 0, 0, 0, 0, 70, 1617
Offset: 0
Examples
Rows start: 1, 0, 0, 0, 0, 0, 0, ...; 1, 0, 0, 0, 0, 0, 0, ...; 2, 1, 0, 0, 0, 0, 0, ...; 5, 6, 3, 1, 0, 0, 0, ...; 14, 28, 28, 20, 10, 4, 1, ...; etc., i.e., there are 5 ways of arranging 3 chords with no intersections, 6 with one, 3 with two and 1 with three.
Links
- H. Bottomley, Illustration for A000108, A001147, A002694, A067310 and A067311
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25, g_n(x).
- alt.math.recreational discussion
Crossrefs
A067311 has a different view of the same table.
Formula
T(n,k) = Sum_{j=0..n-1} (-1)^j * C((n-j)*(n-j+1)/2-1-k, n-1) * (C(2n, j) - C(2n, j-1)) where C(r,s)=binomial(r,s) if r>=s>=0 and 0 otherwise.
Comments