This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067317 #23 Jul 18 2024 09:18:39 %S A067317 1,3,7,15,23,31,59,63,67,81,84,93,95,127,157,170,214,239,253,255,313, %T A067317 470,511,622,694,1010,1023,1098,1691,2047,3535,3836,3963,4095,6143, %U A067317 7166,8191,11757,12525,12686,16383,32767 %N A067317 Numbers k such that 1 + binomial(k,j) is prime for only 2 values of j (0 <= j <= k). %F A067317 Numbers k such that A067316(k) = 2. %e A067317 The 2 values of j are 0 and n, which give the prime 2. The sequence includes all numbers of the form 2^m-1 since binomial(2^m-1,j) is odd for all j. %t A067317 test[n_] := Module[{}, For[i=1, 2i<=n, i++, If[PrimeQ[Binomial[n, i]+1], Return[False]]]; True]; For[n=1, True, n++, If[test[n], Print[n]]] %o A067317 (PARI) isok(n) = sum(j=0, n, isprime(1 + binomial(n,j))) == 2; \\ _Michel Marcus_, Oct 30 2018 %o A067317 (PARI) is(n) = if(n == 1, 1, for(i=1, n\2, if(isprime(binomial(n, i) + 1), return(0))); 1); \\ _Amiram Eldar_, Jul 18 2024 %Y A067317 Cf. A067316. %K A067317 nonn,more %O A067317 1,2 %A A067317 _Labos Elemer_, Jan 15 2002 %E A067317 More terms from _Jon E. Schoenfield_, May 30 2010 %E A067317 a(35)-a(41) from _Robert Israel_, Mar 09 2020 %E A067317 a(42) from _Amiram Eldar_, Jul 18 2024