This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067334 #14 Aug 27 2025 09:13:22 %S A067334 8,21,50,105,210,404,758,1395,2530,4535,8052,14184,24820,43185,74770, %T A067334 128901,221382,378940,646690,1100655,1868738,3165811,5352360,9032400, %U A067334 15216800,25595469,42990578,72110625,120804090,202142180,337876622,564176619,941141410 %N A067334 Convolution of Fibonacci F(n+1), n>=0, with F(n+6), n>=0. %C A067334 Sixth diagonal of A067330. Sixth column of A067418. %H A067334 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-1). %F A067334 a(n) = A067330(n+5, n) = A067418(n+5, 5) = Sum_{k=0..n} F(k+1)*F(n+6-k), n>=0. %F A067334 a(n) = ((29*n+40)*F(n+1)+18*(n+1)*F(n))/5, with F(n) := A000045(n) (Fibonacci). %F A067334 G.f.: (8+5*x)/(1-x-x^2)^2. %F A067334 a(0)=8, a(1)=21, a(2)=50, a(3)=105, a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4). - _Harvey P. Dale_, Apr 07 2012 %t A067334 CoefficientList[Series[(8+5x)/(1-x-x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{8,21,50,105},40] (* _Harvey P. Dale_, Apr 07 2012 *) %Y A067334 Cf. A067330, A067418. %K A067334 nonn,easy,changed %O A067334 0,1 %A A067334 _Wolfdieter Lang_, Feb 15 2002 %E A067334 More terms from _Jason Yuen_, Aug 27 2025