This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067359 #31 Jan 01 2024 11:43:54 %S A067359 1,5,-119,-2035,-239,341525,3455641,-23161315,-815616479,-4241902555, %T A067359 95420159401,1671083125805,584824319281,-276564805068235, %U A067359 -2864483360640839,18094618450123325,665043872449535041,3592448206424508485,-76467932379726337079,-1371803070683005304755 %N A067359 Real part of (5 + 12i)^n. %C A067359 Also 13^n*cos(2*n*arctan(2/3)) or denominator of tan(2*n*arctan(2/3)). %C A067359 Note that A067358(n), a(n) and 13^n are primitive Pythagorean triples with hypotenuse 13^n. %D A067359 Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433. %H A067359 J. M. Borwein and R. Girgensohn, <a href="http://dx.doi.org/10.4153/CJM-1995-013-4">Addition theorems and binary expansions</a>, Canadian J. Math. 47 (1995) 262-273. %H A067359 E. Eckert, <a href="http://www.jstor.org/stable/2690291">The group of primitive Pythagorean triangles</a>, Mathematics Magazine 57 (1984) 22-27. %H A067359 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/plff/plff.html">Plouffe's Constant</a> [Broken link] %H A067359 Steven R. Finch, <a href="http://web.archive.org/web/20010624104257/http://www.mathsoft.com/asolve/constant/plff/plff.html">Plouffe's Constant</a> [From the Wayback machine] %H A067359 Simon Plouffe, <a href="https://cs.uwaterloo.ca/journals/JIS/compass.html">The Computation of Certain Numbers Using a Ruler and Compass</a>, J. Integer Seqs. Vol. 1 (1998), #98.1.3. %H A067359 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, -169). %F A067359 From _Michael Somos_, Jun 27 2002: (Start) %F A067359 G.f.: (1-5*x)/(1-10*x+169*x^2). %F A067359 a(n) = 10*a(n-1) - 169*a(n-2). (End) %p A067359 a[1] := 12/5; for n from 1 to 40 do a[n+1] := (12/5+a[n])/(1-12/5*a[n]):od: seq(abs(denom(a[n])), n=1..40);# a[n]=tan(2n arctan(2/3)) %t A067359 Table[Re[(5+12I)^n],{n,0,20}] (* _Harvey P. Dale_, Aug 24 2014 *) %o A067359 (PARI) a(n)=real((5+12*I)^n) %Y A067359 Cf. A067358 (13^n sin(2n arctan(2/3))). %Y A067359 Cf. A066770, A066771, A067360, A067361, A020888, A014498, A020892. %K A067359 sign,easy,frac %O A067359 1,2 %A A067359 Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002 %E A067359 Better description from _Michael Somos_, Jun 27 2002