cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067372 Integers expressible as the sum of (at least two) consecutive primes in at least 2 ways.

This page as a plain text file.
%I A067372 #20 Feb 16 2025 08:32:45
%S A067372 36,41,60,72,83,90,100,112,119,120,138,143,152,180,187,197,199,204,
%T A067372 210,221,223,228,240,251,258,276,281,287,300,304,311,323,330,340,371,
%U A067372 372,384,390,395,401,408,410,434,439,456,462,473,480,491,492,508,510,533
%N A067372 Integers expressible as the sum of (at least two) consecutive primes in at least 2 ways.
%H A067372 David A. Corneth, <a href="/A067372/b067372.txt">Table of n, a(n) for n = 1..10841</a> (terms <= 10^5, first 1000 terms from Donovan Johnson)
%H A067372 P. De Geest, <a href="https://www.worldofnumbers.com/em122.htm">WONplate 122</a>
%H A067372 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_046.htm">Puzzle 46</a>
%H A067372 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a>
%F A067372 A084143(a(n)) > 1. - _Ray Chandler_, Sep 20 2023
%e A067372 36 = (17 + 19) = (5 + 7 + 11 + 13) or (#2,17) (#4,5).
%t A067372 m=5!; lst={}; Do[p=Prime[a]; Do[p+=Prime[b]; If[p<Prime[m]*3+8,AppendTo[lst,p]],{b,a+1,m,1}],{a,m}]; lst1=Sort[lst]; lst={}; Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}]; Union[lst] (* _Vladimir Joseph Stephan Orlovsky_, Aug 15 2009 *)
%o A067372 (PARI) upto(n) = {my(s = 0, pr = List([0]), l = List(), res = List()); forprime(p = 2, n + 100, s+=p; listput(pr, s) ); for(i = 3, #pr, for(j = 2, i-1, if(pr[i] - pr[i-j] <= n, listput(l, pr[i] - pr[i-j]) , next(2) ) ) ); listsort(l); for(i = 2, #l, if(l[i-1] == l[i], listput(res, l[i]) ) ); Set(res); } \\ _David A. Corneth_, Aug 22 2019
%Y A067372 Cf. A050936, A067372-A067381, A054997.
%K A067372 nonn,easy
%O A067372 1,1
%A A067372 _Patrick De Geest_, Feb 04 2002
%E A067372 Offset corrected by _Donovan Johnson_, Nov 14 2013