cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067377 Primes expressible as the sum of (at least two) consecutive primes in at least 1 way.

This page as a plain text file.
%I A067377 #29 Sep 26 2023 09:04:32
%S A067377 5,17,23,31,41,53,59,67,71,83,97,101,109,127,131,139,173,181,197,199,
%T A067377 211,223,233,251,263,269,271,281,311,331,349,353,373,379,401,421,431,
%U A067377 439,443,449,457,463,479,487,491,499,503,523,563,587,593,607,617,631,647,659,661,677,683,691,701,719
%N A067377 Primes expressible as the sum of (at least two) consecutive primes in at least 1 way.
%H A067377 Hans Havermann, <a href="/A067377/b067377.txt">Table of n, a(n) for n = 1..34589</a>
%H A067377 Patrick De Geest, <a href="http://www.worldofnumbers.com/em122.htm">WONplate 122</a>
%H A067377 Hans Havermann, <a href="http://chesswanks.com/num/a067377.txt">List of possible number of consecutive primes for n = 1..293768</a>
%H A067377 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_046.htm">Puzzle 46. Primes expressible as sum of consecutive primes in K ways</a>, The Prime Puzzles and Problems Connection.
%F A067377 Prime(n) such that A307610(n) > 1. - _Ray Chandler_, Sep 21 2023
%e A067377 The prime 83, for example, is the sum of the five consecutive primes 11 + 13 + 17 + 19 + 23.
%e A067377 The prime 2011, for example, is the sum of the eleven consecutive primes 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211. - _Daniel Forgues_, Nov 03 2011
%t A067377 p = {}; Do[a = Table[ Prime[i], {i, n, 150}]; l = Length[a]; k = 2; While[k < l + 1, b = Plus @@@ Partition[a, k]; k++; p = Append[ p, Select[ b, PrimeQ[ # ] &]]], {n, 1, 149}]; Take[ Union[ Flatten[p]], 70]
%t A067377 m=5!; lst={}; Do[p=Prime[a]; Do[p+=Prime[b]; If[PrimeQ[p]&&p<=Prime[m]*3+8,AppendTo[lst,p]],{b,a+1,m+2,1}],{a,m}]; Union[lst] (* _Vladimir Joseph Stephan Orlovsky_, Aug 15 2009 *)
%Y A067377 Cf. A050936, A067372-A067381, A307610.
%Y A067377 Cf. A197227 (primes that are not the sum of consecutive primes).
%K A067377 nonn
%O A067377 1,1
%A A067377 _Patrick De Geest_, Feb 04 2002
%E A067377 Offset changed to 1 by _Hans Havermann_, Oct 07 2018