cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067380 Primes expressible as the sum of (at least two) consecutive primes in at least 4 ways.

This page as a plain text file.
%I A067380 #36 Aug 11 2024 14:41:34
%S A067380 311,863,14369,14699,15329,19717,29033,34421,36467,37607,40433,42463,
%T A067380 48731,49253,49499,55813,67141,70429,76423,78791,85703,90011,94559,
%U A067380 97159,98411,109159,110359,110527,125821,130513,134921,141587,147031,147347,155087,155387
%N A067380 Primes expressible as the sum of (at least two) consecutive primes in at least 4 ways.
%C A067380 Note that the definition says "at least two", so a(n) = a(n) itself is not allowed as a possible sum (see Examples).
%H A067380 Jon E. Schoenfield, <a href="/A067380/b067380.txt">Table of n, a(n) for n = 1..10000</a>
%H A067380 P. De Geest, <a href="https://www.worldofnumbers.com/em122.htm">WONplate 122</a>
%H A067380 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a067/A067380.java">Java program</a> (github)
%H A067380 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_046.htm">Puzzle 46</a>
%F A067380 Prime(n) such that A307610(n) > 4. - Ray Chandler, Sep 21 2023
%e A067380 311 is a term because 311 is prime and
%e A067380   11+13+17+19+23+29+31+37+41+43+47 = 311,
%e A067380   31+37+41+43+47+53+59 = 311,
%e A067380   53+59+61+67+71 = 311,
%e A067380   101+103+107 = 311.
%e A067380 1151 is not a term, since although 1151 is prime it only has three representations of the required form:
%e A067380   101+97+89+83+79+73+71+67+61+59+53+47+43+41+37+31+29+23+19+17+13+11+7 = 1151,
%e A067380   239+233+229+227+223 = 1151,
%e A067380   389+383+379 = 1151.
%e A067380 Also, 16277 is not a term because although it has five representations as a sum of consecutive primes, it is not itself a prime. - _Sean A. Irvine_, Dec 25 2021
%t A067380 m=7!; lst={}; Do[p=Prime[a]; Do[p+=Prime[b]; If[PrimeQ[p]&&p<Prime[m]*3+8,AppendTo[lst,p]],{b,a+1,m,1}],{a,m}]; lst1=Sort[lst]; lst={}; Do[If[lst1[[n]]==lst1[[n+1]]&&lst1[[n]]==lst1[[n+2]]&&lst1[[n]]==lst1[[n+3]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-3}]; Union[lst] (* _Vladimir Joseph Stephan Orlovsky_, Aug 15 2009 *)
%o A067380 (Magma) M:=160000; P:=PrimesUpTo(M); S:=[0]; for p in P do t:=S[#S]+p; if #S ge 3 then if t-S[#S-2] gt M then break; end if; end if; S[#S+1]:=t;end for; c:=[0:j in [1..M]]; for C in [2..#S-1] do if IsEven(C) then L:=1; else L:=#S-C; end if; for j in [1..L] do s:=S[j+C]-S[j]; if s gt M then break; end if; if IsPrime(s) then c[s]+:=1; end if; end for; end for; [j:j in [1..M]|c[j] ge 4]; // _Jon E. Schoenfield_, Dec 25 2021
%Y A067380 Cf. A050936, A067372-A067381, A307610.
%K A067380 nonn
%O A067380 1,1
%A A067380 _Patrick De Geest_, Feb 04 2002
%E A067380 The terms have been confirmed by _Sean A. Irvine_, Dec 24 2021. - _N. J. A. Sloane_, Dec 25 2021