This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067388 #28 Jun 01 2017 10:18:39 %S A067388 55410683,102291263,141430363,226383163,280064453,457433213,531290533, %T A067388 542418463,555695713,582949903,629444003,664652203,665813153, %U A067388 777809113,802919653,852404053,887653633,894328243,898734673,979048313,993517643 %N A067388 Initial prime in set of 4 consecutive primes with common gap 48. %H A067388 Chai Wah Wu, <a href="/A067388/b067388.txt">Table of n, a(n) for n = 1..1000</a> (terms 1..102 from Zak Seidov) %H A067388 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %t A067388 Transpose[Select[Partition[Prime[Range[10000000]], 4, 1], Union[Differences[#]]=={48}&]][[1]] (* _Vincenzo Librandi_, Jun 21 2015 *) %o A067388 (Python) %o A067388 from sympy import isprime, nextprime %o A067388 A067388_list, p = [], 2 %o A067388 q, r, s = p+48, p+96, p+144 %o A067388 while s <= 10**10: %o A067388 np = nextprime(p) %o A067388 if np == q and isprime(r) and isprime(s) and nextprime(q) == r and nextprime(r) == s: %o A067388 A067388_list.append(p) %o A067388 p, q, r, s = np, np+48, np+96, np+144 # _Chai Wah Wu_, Jun 01 2017 %Y A067388 Analogous sequences (with differences in square brackets): A033451[6], A033447[12], A033448[18], A052242[24], A052243[30], A058252[36], A058323[42], this sequence[48]. %K A067388 nonn %O A067388 1,1 %A A067388 _Labos Elemer_, Jan 21 2002 %E A067388 a(7)-a(21) from _Donovan Johnson_, Sep 05 2008