This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067396 #20 Feb 18 2025 08:59:02 %S A067396 4,13,22,31,36,41,50,59,68,77,86,95,104,109,114,123,132,141,150,159, %T A067396 168,177,182,187,196,205,214,223,232,241,250,255,260,269,278,287,292, %U A067396 297,306,315,324,329,334,343,352,361,370,379,388,397,402,407,416,425 %N A067396 a(n) is the position of the n-th occurrence of the pair "2,2" in A067395 (the first difference sequence of A067368). %C A067396 A comparison of this sequence with A067368 suggests the following conjecture: a(n)=2*A067368(n)+n-1. This has been confirmed for several hundred terms. %C A067396 Above conjecture is true, and it is same as conjecture in Formula section of A067368. - _Altug Alkan_, Sep 26 2018 %C A067396 The asymptotic density of this sequence is 1/8. - _Amiram Eldar_, May 31 2024 %H A067396 Altug Alkan, <a href="/A067396/b067396.txt">Table of n, a(n) for n = 1..1000</a> %e A067396 A067395 begins {4,4,4,2,2,4,4,4,4,...}, so a(1)=4. %o A067396 (Python) %o A067396 def A067396(n): %o A067396 def f(x): return n+x-sum(((x>>i)-1>>1)+1 for i in range(0,x.bit_length(),3)) %o A067396 m, k = n, f(n) %o A067396 while m != k: m, k = k, f(k) %o A067396 return (m<<2)+n-1 # _Chai Wah Wu_, Feb 17 2025 %Y A067396 Cf. A067368, A067395, A213258. %K A067396 nonn %O A067396 1,1 %A A067396 _John W. Layman_, Jan 22 2002