A067399 Number of divisors of n in OR-numbral arithmetic.
1, 2, 2, 3, 2, 4, 3, 4, 2, 4, 2, 6, 2, 6, 5, 5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8, 6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14, 7, 2, 4, 2, 6, 2, 4, 2, 8, 3, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 9, 5, 4, 2, 8, 2, 8, 4, 6, 2, 8, 6, 12, 2, 4, 4, 6
Offset: 1
Keywords
Examples
a(15)=5 since [15] has the 5 OR-numbral divisors [1], [3], [5], [7] and [15]. If written as a triangle with rows of lengths 1,2,4,8,16,...: 1, 2, 2, 3, 2, 4, 3, 4, 2, 4, 2, 6, 2, 6, 5, 5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8, 6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14, ..., the last terms in each row give A079500(n). The penultimate terms in the rows give 2*A079500(n-1). - _N. J. A. Sloane_, Mar 05 2011
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..1024
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
- Index entries for sequences related to dismal (or lunar) arithmetic
Comments