cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067435 a(n) is the sum of all the remainders when n-th odd number is divided by odd numbers < 2n-1.

Original entry on oeis.org

0, 0, 2, 3, 6, 9, 16, 13, 27, 31, 34, 43, 57, 56, 75, 80, 96, 99, 121, 122, 155, 164, 163, 184, 220, 218, 255, 252, 277, 304, 339, 328, 372, 389, 412, 433, 491, 478, 515, 536, 570, 609, 638, 647, 722, 713, 746, 767, 858, 842, 910, 939, 942, 993, 1060, 1057
Offset: 1

Views

Author

Amarnath Murthy, Jan 29 2002

Keywords

Examples

			a(7) = 16 = 1 +3 +6 +4 +2 = 13 % 3 + 13 % 5 + 13 % 7 + 13 % 9 + 13 % 11.
		

Crossrefs

Programs

  • Maple
    L:= [seq(4*n-3 - numtheory:-sigma(2*n-1)-numtheory:-sigma((n-1)/2^padic:-ordp(n-1,2)), n=1..100)]:
    ListTools:-PartialSums(L); # Robert Israel, Jan 16 2019
  • Python
    from math import isqrt
    def A327329(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))
    def A067435(n): return n*((n<<1)-1)-(A327329(n<<1)>>1)-A327329(n>>1)+3*(A327329(n)>>1)+A327329(n-1>>1)-(A327329(n-1)>>1) # Chai Wah Wu, Nov 01 2023

Formula

a(n) = a(n-1) + 4*n-3 - A000203(2*n-1) - A000593(n-1). - Robert Israel, Jan 16 2019
a(n) = n*(2*n-1) - A326123(n) - A078471(n-1) = n*(2*n-1) - A024916(2*n) - 2*A024916(floor(n/2)) + 3*A024916(n) + 2*A024916(floor((n-1)/2)) - A024916(n-1). - Chai Wah Wu, Nov 01 2023

Extensions

Corrected and extended by several contributors.