This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067442 #29 Sep 08 2022 08:45:05 %S A067442 1,16,125,16,1024,15625,128,1679616,19683,1024,177147,16777216, %T A067442 1594323,16384,14348907,152587890625,131072,101559956668416, %U A067442 1162261467,1048576,10460353203,17592186044416,11920928955078125,16777216 %N A067442 a(1) = 1 and then smallest nontrivial n-th power starting with 1. %C A067442 Terms from _Robert G. Wilson v_. %H A067442 Robert Israel, <a href="/A067442/b067442.txt">Table of n, a(n) for n = 1..1007</a> %p A067442 f:= proc(n) local x,y; %p A067442 for x from 2 to 10 do %p A067442 y:= x^n; %p A067442 if floor(y/10^ilog10(y)) = 1 then return x^n fi %p A067442 od %p A067442 end proc: %p A067442 f(1):= 1: %p A067442 map(f, [$1..50]); # _Robert Israel_, Aug 13 2019 %t A067442 a = {}; Do[k = 2; While[First[IntegerDigits[k^n]] != 1, k++ ]; a = Append[a, k^n], {n, 2, 25}]; a (* _Robert G. Wilson v_ *) %o A067442 (PARI) a(n) = {if (n==1, return (1)); k=2; while (! (ispower(k,n) && (digits(k)[1] == 1)), k++); k;} \\ _Michel Marcus_, Mar 18 2015 %o A067442 (Magma) m:=1; sol:=[1]; for n in [2..24] do k:=2; while Reverse(Intseq(k^n))[1] ne 1 do; k:=k+1; end while; sol[m+1]:=k^n; m:=m+1; end for; sol; // _Marius A. Burtea_, Aug 15 2019 %o A067442 (Python) %o A067442 print(1,1) %o A067442 n = 1 %o A067442 while n < 20: %o A067442 n, p = n+1, 2 %o A067442 s = str(p**n) %o A067442 while s[0] != "1": %o A067442 p = p+1 %o A067442 s = str(p**n) %o A067442 print(n,p**n) # _A.H.M. Smeets_, Aug 16 2019 %K A067442 base,easy,nonn %O A067442 1,2 %A A067442 _Amarnath Murthy_, Feb 05 2002