This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067484 #29 Oct 20 2018 06:05:34 %S A067484 6,60466176,609359740010496,6140942214464815497216, %T A067484 61886548790943213277031694336,623673825204293256669089197883129856, %U A067484 6285195213566005335561053533150026217291776,63340286662973277706162286946811886609896461828096 %N A067484 Powers of 6 with initial digit 6. %C A067484 The geometric progression formula a(n)=10077696*a(n-1) does NOT hold if n=20, 40, 59, 79, 98, etc. - _R. J. Mathar_, Jun 24 2009 %H A067484 Muniru A Asiru, <a href="/A067484/b067484.txt">Table of n, a(n) for n = 1..89</a> %H A067484 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/NonRecursions.html">Non Recursions</a> %p A067484 A067484 := proc(n) local p6,p,a ; if n = 1 then 6; else p6 := procname(n-1) ; ifactors(p6)[2] ; p := op(2,op(1,%)) ; for a from p+1 do p6 := 6^a ; convert(%,base,10) ; if op(-1,%) = 6 then RETURN(p6) ; fi; od: fi; end: # _R. J. Mathar_, Jun 24 2009 %t A067484 Select[6^Range[100],First[IntegerDigits[#]]==6&] (* _Harvey P. Dale_, Aug 14 2018 *) %o A067484 (GAP) k:=6;; Filtered(List([0..80],n->k^n),i->ListOfDigits(i)[1]=k); # _Muniru A Asiru_, Oct 18 2018 %Y A067484 Cf. A067480, A067481, A067482, A067483. %K A067484 base,easy,nonn %O A067484 1,1 %A A067484 _Amarnath Murthy_, Feb 09 2002 %E A067484 More terms from _Benoit Cloitre_, Feb 22 2002 %E A067484 a(8) from _Harvey P. Dale_, Aug 14 2018 %E A067484 Offset changed to 1 by _Muniru A Asiru_, Oct 19 2018