This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067488 #50 Jan 03 2025 02:18:00 %S A067488 1,16,128,1024,16384,131072,1048576,16777216,134217728,1073741824, %T A067488 17179869184,137438953472,1099511627776,17592186044416, %U A067488 140737488355328,1125899906842624,18014398509481984,144115188075855872,1152921504606846976,18446744073709551616 %N A067488 Powers of 2 with initial digit 1. %C A067488 Also smallest n-digit power of 2. %C A067488 For each range 10^(n-1) to 10^n-1 there exists exactly 1 power of 2 with first digit 1 (floor(log_10(a(n))) = n-1). As such, the density of this sequence relative to all powers of 2 (A000079) is log(2)/log(10) (0.301..., A007524), which is prototypical of Benford's Law. - _Charles L. Hohn_, Jul 23 2024 %H A067488 Muniru A Asiru, <a href="/A067488/b067488.txt">Table of n, a(n) for n = 1..993</a> %H A067488 <a href="/index/Di#divseq">Index to divisibility sequences</a> %F A067488 a(n) = 2^ceiling((n-1)*log(10)/log(2)). - _Benoit Cloitre_, Aug 29 2002 %F A067488 From _Charles L. Hohn_, Jun 09 2024: (Start) %F A067488 a(n) = 2^A067497(n-1). %F A067488 A055642(a(n)) = n. (End) %t A067488 Select[2^Range[0, 70], First[IntegerDigits[#]] == 1 &] (* _Harvey P. Dale_, Mar 14 2011 *) %o A067488 (PARI) a(n)=2^ceil((n-1)*log(10)/log(2)) \\ _Charles R Greathouse IV_, Apr 08 2012 %o A067488 (GAP) Filtered(List([0..60],n->2^n),i->ListOfDigits(i)[1]=1); # _Muniru A Asiru_, Oct 22 2018 %o A067488 (Scala) (List.fill(50)(2: BigInt)).scanLeft(1: BigInt)(_ * _).filter(_.toString.startsWith("1")) // _Alonso del Arte_, Jan 16 2020 %o A067488 (Magma) [2^n: n in [0..100] | Intseq(2^n)[#Intseq(2^n)] eq 1]; // _Vincenzo Librandi_, Dec 31 2024 %Y A067488 Cf. A000079, A067497, A055642, %Y A067488 Other initial digits: A067480, A067481, A067482, A067483, A067484, A067485, A067486, A067487, A074116. %Y A067488 Cf. A074117, A074118. %K A067488 base,easy,nonn %O A067488 1,2 %A A067488 _Amarnath Murthy_, Feb 09 2002