This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067526 #26 Dec 18 2023 17:03:13 %S A067526 3,4,5,7,9,15,21,45,75,105 %N A067526 Numbers n such that n - 2^k is a prime or 1 for all k satisfying 0 < k, 2^k < n. %C A067526 Is the sequence finite? %C A067526 Next term, if it exists, exceeds 5*10^9. - _Sean A. Irvine_, Dec 18 2023 %e A067526 45 belongs to this sequence as 45-2, 45-4, 45-8, 45-16, 45-32, i.e., 43, 41, 37, 29 and 13 are all primes. %t A067526 f[n_] := Block[{k = 1}, While[2^k < n, k++ ]; k--; k]; Do[ a = Table[n - 2^k, {k, 1, f[n]} ]; If[ a[[ -1]] == 1, a = Drop[a, -1]]; If[ Union[ PrimeQ[a]] == {True}, Print[n]], {n, 5, 10^7, 2} ] %o A067526 (Python) %o A067526 from sympy import isprime %o A067526 def ok(n): %o A067526 k, pow2 = 1, 2 %o A067526 while pow2 < n - 1: %o A067526 if not isprime(n-pow2): return False %o A067526 pow2 *= 2 %o A067526 return (2 < n) %o A067526 print([m for m in range(1, 200) if ok(m)]) # _Michael S. Branicky_, Mar 04 2021 %Y A067526 Cf. A039669 (n-2^k is prime). %K A067526 nonn,hard,more %O A067526 1,1 %A A067526 _Amarnath Murthy_, Feb 17 2002 %E A067526 Edited by _Robert G. Wilson v_, Feb 18 2002