This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067534 #19 Aug 14 2025 20:23:53 %S A067534 1,20,161,900,4225,18196,75185,304836,1225905,4913620,19669121, %T A067534 78697220,314817441,1259308180,5037283345,20149198916,80596879185, %U A067534 322387621716,1289550617185,5158202628740,20632810709441 %N A067534 a(n) = 4^n * Sum_{i=1..n} i^4/4^i. %H A067534 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (9,-30,50,-45,21,-4). %F A067534 a(n) = 1/81 * (380*4^n - 27*n^4 - 144*n^3 - 360*n^2 - 528*n - 380). - _Ralf Stephan_, May 08 2004 %F A067534 a(1)=1, a(2)=20, a(3)=161, a(4)=900, a(5)=4225, a(6)=18196, a(n)= 9*a(n-1)- 30*a(n-2)+50*a(n-3)-45*a(n-4)+21*a(n-5)-4*a(n-6). - _Harvey P. Dale_, Jul 15 2012 %F A067534 From _Peter Bala_, Nov 29 2012: (Start) %F A067534 Recurrence equation: a(n) = 4*a(n-1) + n^4. See A047520 and A066999. %F A067534 O.g.f.: (x + 11*x^2 + 11*x^3 + x^4)/((1 - 4*x)*(1 - x)^5) = x + 20*x^2 + 161*x^3 + .... (End) %t A067534 Table[4^n*Sum[i^4/4^i,{i,n}], {n,30}] (* or *) LinearRecurrence[ {9,-30,50,-45,21,-4}, {1,20,161,900,4225,18196}, 30] (* _Harvey P. Dale_, Jul 15 2012 *) %Y A067534 Cf. A047520, A066999. %K A067534 nonn,easy %O A067534 1,2 %A A067534 _Benoit Cloitre_, Jan 27 2002