This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067538 #55 Feb 16 2025 08:32:45 %S A067538 1,2,2,4,2,8,2,11,9,14,2,46,2,24,51,66,2,126,2,202,144,69,2,632,194, %T A067538 116,381,756,2,1707,2,1417,956,316,2043,5295,2,511,2293,9151,2,10278, %U A067538 2,8409,14671,1280,2,36901,8035,21524,11614,25639,2,53138,39810,85004 %N A067538 Number of partitions of n in which the number of parts divides n. %C A067538 Also sum of p(n,d) over the divisors d of n, where p(n,m) is the count of partitions of n in exactly m parts. - _Wouter Meeussen_, Jun 07 2009 %C A067538 From _Gus Wiseman_, Sep 24 2019: (Start) %C A067538 Also the number of integer partitions of n whose maximum part divides n. The Heinz numbers of these partitions are given by A326836. For example, the a(1) = 1 through a(8) = 11 partitions are: %C A067538 (1) (2) (3) (4) (5) (6) (7) (8) %C A067538 (11) (111) (22) (11111) (33) (1111111) (44) %C A067538 (211) (222) (422) %C A067538 (1111) (321) (431) %C A067538 (2211) (2222) %C A067538 (3111) (4211) %C A067538 (21111) (22211) %C A067538 (111111) (41111) %C A067538 (221111) %C A067538 (2111111) %C A067538 (11111111) %C A067538 (End) %H A067538 Chai Wah Wu, <a href="/A067538/b067538.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..500 from Wouter Meeussen, n = 501..1000 from Alois P. Heinz, n = 1001..5000 from David A. Corneth) %H A067538 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/PartitionFunctionP.html">Partition Function P</a> %H A067538 Wikipedia, <a href="https://www.wikipedia.org/wiki/integer_partition">Integer Partition</a> %F A067538 a(p) = 2 for all primes p. %e A067538 a(3)=2 because 3 is a prime; a(4)=4 because the five partitions of 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}, and the number of parts in each of them divides 4 except for {2, 1, 1}. %e A067538 From _Gus Wiseman_, Sep 24 2019: (Start) %e A067538 The a(1) = 1 through a(8) = 11 partitions whose length divides their sum are the following. The Heinz numbers of these partitions are given by A316413. %e A067538 (1) (2) (3) (4) (5) (6) (7) (8) %e A067538 (11) (111) (22) (11111) (33) (1111111) (44) %e A067538 (31) (42) (53) %e A067538 (1111) (51) (62) %e A067538 (222) (71) %e A067538 (321) (2222) %e A067538 (411) (3221) %e A067538 (111111) (3311) %e A067538 (4211) %e A067538 (5111) %e A067538 (11111111) %e A067538 (End) %t A067538 Do[p = IntegerPartitions[n]; l = Length[p]; c = 0; k = 1; While[k < l + 1, If[ IntegerQ[ n/Length[ p[[k]] ]], c++ ]; k++ ]; Print[c], {n, 1, 57}, All] %t A067538 p[n_,k_]:=p[n,k]=p[n-1,k-1]+p[n-k,k];p[n_,k_]:=0/;k>n;p[n_,n_]:=1;p[n_,0]:=0 %t A067538 Table[Plus @@ (p[n,# ]&/ @ Divisors[n]),{n,36}] (* _Wouter Meeussen_, Jun 07 2009 *) %t A067538 Table[Count[IntegerPartitions[n], q_ /; IntegerQ[Mean[q]]], {n, 50}] (*_Clark Kimberling_, Apr 23 2019 *) %o A067538 (PARI) a(n) = {my(nb = 0); forpart(p=n, if ((vecsum(Vec(p)) % #p) == 0, nb++);); nb;} \\ _Michel Marcus_, Jul 03 2018 %o A067538 (Python) %o A067538 # uses A008284_T %o A067538 from sympy import divisors %o A067538 def A067538(n): return sum(A008284_T(n,d) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Sep 21 2023 %Y A067538 Cf. A000005, A000041, A143773, A298422, A298423, A298426. %Y A067538 The strict case is A102627. %Y A067538 Partitions with integer geometric mean are A067539. %Y A067538 Cf. A018818, A102627, A316413, A326622, A326836, A326843, A326850. %K A067538 easy,nonn %O A067538 1,2 %A A067538 _Naohiro Nomoto_, Jan 27 2002 %E A067538 Extended by _Robert G. Wilson v_, Oct 16 2002