cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067592 Number of partitions of n into Lucas parts (A000204(k) for k >= 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 6, 7, 8, 10, 13, 15, 17, 21, 25, 28, 32, 39, 44, 49, 57, 66, 73, 82, 94, 105, 116, 130, 147, 162, 178, 199, 221, 241, 265, 295, 322, 350, 385, 423, 458, 498, 545, 592, 639, 693, 755, 814, 876, 949, 1026, 1100, 1183, 1278, 1371, 1467, 1576, 1694, 1809, 1933, 2072, 2215, 2359, 2517, 2691
Offset: 0

Views

Author

Naohiro Nomoto, Jan 31 2002

Keywords

Examples

			a(7) counts these partitions: 7, 43, 4111, 331, 31111, 1111111. - _Clark Kimberling_, Mar 08 2014
		

Programs

  • Mathematica
    p[n_] := IntegerPartitions[n, All, LucasL@Range@15]; Table[p[n], {n, 0, 12}] (* shows partitions *)
    a[n_] := Length@p@n; a /@ Range[0,80] (* counts partitions, A067592 *)
    (* Clark Kimberling, Mar 08 2014 *)
    Table[SeriesCoefficient[gf = 1; k = 1; While[LucasL[k] <= n, gf = gf*(1 - x^LucasL[k]); k++]; gf = 1/gf, {x, 0, n}], {n, 0, 100}] (* Vaclav Kotesovec, Mar 26 2014, after Joerg Arndt *)
  • PARI
    N=66; q='q+O('q^N);
    L(n) = fibonacci(n+2) - fibonacci(n-2);
    gf = 1; k=1; while( L(k) <= N, gf*=(1-q^L(k)); k+=1 ); gf = 1/gf;
    Vec( gf ) /* Joerg Arndt, Mar 26 2014 */

Formula

G.f.: 1/Product_{n>=1} (1 - q^A000204(n)). - Joerg Arndt, Mar 26 2014