A067593 Number of partitions of n into Lucas parts (A000032).
1, 1, 2, 3, 5, 6, 9, 12, 16, 20, 26, 33, 41, 50, 62, 75, 90, 107, 129, 151, 178, 208, 244, 281, 326, 375, 431, 491, 561, 638, 723, 816, 922, 1037, 1163, 1302, 1458, 1624, 1808, 2009, 2231, 2467, 2729, 3012, 3321, 3651, 4014, 4406, 4828, 5282, 5777, 6308, 6877, 7491, 8155, 8862, 9622, 10438, 11316, 12247, 13249
Offset: 0
Examples
a(5)=6 because we have 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+1+1+1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
PARI
N=66; q='q+O('q^N); L(n) = fibonacci(n+1) + fibonacci(n-1); gf = 1; k=0; while( L(k) <= N, gf*=(1-q^L(k)); k+=1 ); gf = 1/gf; Vec( gf ) /* Joerg Arndt, Mar 26 2014 */
Formula
G.f.: 1/((1-x^2)*prod(i>=1, 1-x^(fibonacci(i-1)+fibonacci(i+1)) ) ). - Emeric Deutsch, Mar 23 2005
G.f.: 1 / prod(n>=0, 1 - q^A000032(n) ). [Joerg Arndt, Mar 26 2014]