cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067593 Number of partitions of n into Lucas parts (A000032).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 12, 16, 20, 26, 33, 41, 50, 62, 75, 90, 107, 129, 151, 178, 208, 244, 281, 326, 375, 431, 491, 561, 638, 723, 816, 922, 1037, 1163, 1302, 1458, 1624, 1808, 2009, 2231, 2467, 2729, 3012, 3321, 3651, 4014, 4406, 4828, 5282, 5777, 6308, 6877, 7491, 8155, 8862, 9622, 10438, 11316, 12247, 13249
Offset: 0

Views

Author

Naohiro Nomoto, Jan 31 2002

Keywords

Examples

			a(5)=6 because we have 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+1+1+1.
		

Programs

  • PARI
    N=66; q='q+O('q^N);
    L(n) = fibonacci(n+1) + fibonacci(n-1);
    gf = 1; k=0; while( L(k) <= N, gf*=(1-q^L(k)); k+=1 ); gf = 1/gf;
    Vec( gf ) /* Joerg Arndt, Mar 26 2014 */

Formula

G.f.: 1/((1-x^2)*prod(i>=1, 1-x^(fibonacci(i-1)+fibonacci(i+1)) ) ). - Emeric Deutsch, Mar 23 2005
G.f.: 1 / prod(n>=0, 1 - q^A000032(n) ). [Joerg Arndt, Mar 26 2014]