A067595 Number of partitions of n into distinct Lucas parts (A000032).
1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 4, 6, 5, 5, 5, 6, 4, 4, 6, 5, 5, 5, 6, 4, 4, 4, 5, 4, 4, 7, 6, 6, 6, 8, 5, 5, 7, 6, 6, 6, 8, 6, 6, 6, 7, 5, 5, 8, 6, 6, 6, 7, 4, 4, 5, 5, 5, 5, 8, 7, 7, 7, 9, 6, 6, 9, 8, 8, 8, 10, 7, 7, 7, 8, 6, 6, 10, 8, 8, 8, 10, 6, 6, 8
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..15127
Programs
-
Mathematica
n1 = 10; n2 = LucasL[n1]; (1 + x^2)*Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *)
-
PARI
L(n) = fibonacci(n+1) + fibonacci(n-1); N = 66; x = 'x + O('x^N); gf = prod(n=0, 11, 1 + x^L(n) ); \\gf = prod(n=1, 11, 1 + x^L(n) ) * (1+x^2); \\ same g.f. Vec(gf) \\ Joerg Arndt, Jul 14 2013
Formula
G.f.: B(x) * (1 + x^2) where B(x) is the g.f. of A003263. [Joerg Arndt, Jul 14 2013]
Extensions
Corrected a(0), Joerg Arndt, Jul 14 2013