cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067614 a(n) is the second partial quotient in the simple continued fraction for sqrt(prime(n)).

This page as a plain text file.
%I A067614 #17 May 06 2022 21:08:56
%S A067614 2,1,4,1,3,1,8,2,1,2,1,12,2,1,1,3,1,1,5,2,1,1,9,2,1,20,6,2,2,1,3,2,1,
%T A067614 1,4,3,1,1,1,6,2,2,1,1,28,9,1,1,15,7,3,2,1,1,32,4,2,2,1,1,1,8,1,1,1,1,
%U A067614 5,2,1,1,1,1,6,3,2,1,1,1,40,4,2,1,1,1,1,21,5,2,2,1,1,1,14,6,2,2,1,1,1
%N A067614 a(n) is the second partial quotient in the simple continued fraction for sqrt(prime(n)).
%F A067614 a(n) = floor(1/(sqrt(prime(n))-floor(sqrt(prime(n))))), where prime(n) is the n-th prime.
%F A067614 a(n) = floor(2*s/r) where s = floor(sqrt(p)) = A000006(n), r = p - s^2 = A056892(n), and p = prime(n). - _Kevin Ryde_, May 06 2022
%e A067614 For n=8, prime(n)=19, floor(sqrt(19))=4 and 1/(sqrt(19)-4) = 2.786..., so a(8)=2.
%t A067614 a[n_] := Floor[1/(Sqrt[Prime[n]]-Floor[Sqrt[Prime[n]]])]
%o A067614 (PARI) a(n) = my(r); sqrtint(prime(n),&r)<<1 \ r; \\ _Kevin Ryde_, May 06 2022
%Y A067614 Cf. A000006, A000040, A056892.
%K A067614 nonn,easy
%O A067614 1,1
%A A067614 _Roger L. Bagula_, Feb 01 2002
%E A067614 Edited by _Dean Hickerson_, Feb 14 2002