A067618 Number of self-conjugate partitions of n into prime parts.
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 5, 0, 0, 1, 6, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 1, 5, 0, 0, 0, 7, 0, 0, 0, 9, 0, 0, 0, 5, 0
Offset: 0
Programs
-
Mathematica
f[0, m_, k_] := 1; f[n_, 0, k_] := If[n==0, 1, 0]; f[n_, m_, k_] := If[n<0||m<0, 0, Module[{r}, f[n, m, k]=f[n, m-1, k]+If[PrimeQ[m+k], Sum[If[PrimeQ[r+k], f[n-r(2m-r), m-r-1, k+r], 0], {r, 1, m}], 0]]]; a[n_] := f[n, Floor[n/4]+1, 0]; (* f[n, m, k] = number of self-conjugate partitions of n with parts <= m such that every part+k is prime *)
Extensions
Edited by Dean Hickerson, Feb 11 2002