cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067618 Number of self-conjugate partitions of n into prime parts.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 5, 0, 0, 1, 6, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 1, 5, 0, 0, 0, 7, 0, 0, 0, 9, 0, 0, 0, 5, 0
Offset: 0

Views

Author

Naohiro Nomoto, Feb 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[0, m_, k_] := 1; f[n_, 0, k_] := If[n==0, 1, 0]; f[n_, m_, k_] := If[n<0||m<0, 0, Module[{r}, f[n, m, k]=f[n, m-1, k]+If[PrimeQ[m+k], Sum[If[PrimeQ[r+k], f[n-r(2m-r), m-r-1, k+r], 0], {r, 1, m}], 0]]]; a[n_] := f[n, Floor[n/4]+1, 0]; (* f[n, m, k] = number of self-conjugate partitions of n with parts <= m such that every part+k is prime *)

Extensions

Edited by Dean Hickerson, Feb 11 2002