This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067627 #7 May 08 2019 12:31:54 %S A067627 1,1,1,1,1,2,3,1,1,3,2,1,6,1,3,7,2,5,9,2,1,8,11,2,1,13,14,1,3,19,15,3, %T A067627 5,27,19,1,11,34,22,2,1,15,49,23,2,1,27,59,28,3,3,39,78,30,1,5,60,93, %U A067627 34,3,11,82,118,36,1,18,115,140,41,3,1,30,155,170,42,2,1,48 %N A067627 Triangle T(n,k) = number of conjugacy classes of partitions of n using only k types of piles, read by rows. %C A067627 Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056). %e A067627 Triangle turned on its side begins: %e A067627 1.1.1.2.1.2.1.2.2..2..1..3..1..2..2....etc A038548 %e A067627 ....1.1.3.3.6.7.9.11.14.15.19.22.23....etc A270060 %e A067627 ..........1.1.3.5..8.13.19.27.34.49....etc %e A067627 ...................1..1..3..5.11.15....etc %p A067627 compareL := proc(L1,L2) %p A067627 if nops(L1) < nops(L2) then %p A067627 -1 ; %p A067627 elif nops(L1) > nops(L2) then %p A067627 1; %p A067627 else %p A067627 for i from 1 to nops(L1) do %p A067627 if op(i,L1) > op(i,L2) then %p A067627 return 1 ; %p A067627 elif op(i,L1) < op(i,L2) then %p A067627 return -1 ; %p A067627 end if; %p A067627 end do: %p A067627 0 ; %p A067627 end if; %p A067627 end proc: %p A067627 A067627 := proc(n,k) %p A067627 local a,p,s,pc ; %p A067627 a := 0 ; %p A067627 for p in combinat[partition](n) do %p A067627 s := convert(p,set) ; %p A067627 if nops(s) = k then %p A067627 pc := combinat[conjpart](p) ; %p A067627 if compareL(p,pc) <= 0 then %p A067627 a := a+1 ; %p A067627 end if; %p A067627 end if; %p A067627 end do: %p A067627 a ; %p A067627 end proc: %p A067627 for n from 1 to 30 do %p A067627 for k from A003056(n) to 1 by -1 do %p A067627 printf("%4d,",A067627(n,k)) ; %p A067627 end do: %p A067627 printf("\n") ; %p A067627 end do: # _R. J. Mathar_, May 08 2019 %Y A067627 Cf. A000700, A000701, A046682, A060177. Diagonals give A038548. row sums give A046682. %K A067627 easy,nonn,tabf %O A067627 1,6 %A A067627 _Naohiro Nomoto_, Feb 02 2002 %E A067627 More terms from _R. J. Mathar_, May 08 2019