This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067628 #34 Jan 28 2023 12:01:26 %S A067628 0,3,4,5,6,7,6,7,8,9,8,9,10,9,10,11,10,11,12,11,12,13,12,13,12,13,14, %T A067628 13,14,15,14,15,14,15,16,15,16,15,16,17,16,17,16,17,18,17,18,17,18,19, %U A067628 18,19,18,19,18,19,20,19,20,19,20,21,20,21,20,21,20,21,22,21,22,21,22 %N A067628 Minimal perimeter of polyiamond with n triangles. %C A067628 A polyiamond is a shape made up of n congruent equilateral triangles. %D A067628 Frank Harary and Heiko Harborth, Extremal animals, J. Combinatorics Information Syst. Sci., 1(1):1-8, 1976. %H A067628 Stefano Spezia, <a href="/A067628/b067628.txt">Table of n, a(n) for n = 0..10000</a> %H A067628 Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, <a href="https://doi.org/10.1007/s00026-022-00631-1">Extremal {p, q}-Animals</a>, Ann. Comb. (2023). See Corollary 1.9 at p. 8. %H A067628 Greg Malen and Érika Roldán, <a href="https://arxiv.org/abs/1906.08447">Polyiamonds Attaining Extremal Topological Properties</a>, arXiv:1906.08447 [math.CO], 2019. %H A067628 J. Yackel, R. R. Meyer, and I. Christou, <a href="https://doi.org/10.1007/BF02614375">Minimum-perimeter domain assignment</a>, Mathematical Programming, vol. 78 (1997), pp. 283-303. %H A067628 W. C. Yang and R. R. Meyer, <a href="http://digital.library.wisc.edu/1793/64366">Maximal and minimal polyiamonds</a>, 2002. %F A067628 Let c(n) = ceiling(sqrt(6n)). Then a(n) is whichever of c(n) or c(n) + 1 has the same parity as n. %F A067628 a(n) = 2*ceiling((n + sqrt(6*n))/2) - n (Harary and Harborth, 1976). - _Stefano Spezia_, Oct 02 2019 %p A067628 interface(quiet=true); for n from 0 to 100 do if (1 = 1) then temp1 := ceil(sqrt(6*n)); end if; if ((temp1 mod 2) = (n mod 2)) then temp2 := 0; else temp2 := 1; end if; printf("%d,", temp1 + temp2); od; %o A067628 (PARI) a(n)=2*ceil((n+sqrt(6*n))/2)-n; \\ _Stefano Spezia_, Oct 02 2019 %o A067628 (Python) %o A067628 from math import isqrt %o A067628 def A067628(n): return (c:=isqrt(6*n-1)+1)+((c^n)&1) if n else 0 # _Chai Wah Wu_, Jul 28 2022 %Y A067628 Cf. A000105, A000577, A027709 (squares), A057729, A135711. %K A067628 nonn %O A067628 0,2 %A A067628 Winston C. Yang (winston(AT)cs.wisc.edu), Feb 02 2002