This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067667 #55 Jul 06 2023 06:01:16 %S A067667 1,1,3,315,638512875,122529844256906551386796875, %T A067667 13757108753595648665519665029568345104465749222289382342659100341796875 %N A067667 a(n) = (2^n)!/2^(2^n-1). %C A067667 a(n) is also the number of knockout tournament seedings with 2^n teams. - _Alexander Karpov_, Aug 09 2015 %C A067667 From _Zhujun Zhang_, Jun 17 2019: (Start) %C A067667 a(n) is also the number of heap-ordered binomial trees of order n (i.e., binomial heaps with 2^n nodes), see the Mark R. Brown reference. %C A067667 a(n) is also the largest odd divisor of (2^n)!. (End) %H A067667 Jianing Song, <a href="/A067667/b067667.txt">Table of n, a(n) for n = 0..8</a> %H A067667 Mark R. Brown, <a href="https://doi.org/10.1137/0207026">Implementation and analysis of binomial queue algorithms</a>, SIAM Journal on Computing, 1978, 7(3):298-319. %H A067667 Alexander Karpov, <a href="http://www.uni-heidelberg.de/md/awi/forschung/dp600.pdf">A theory of knockout tournament seedings</a>, Heidelberg University, AWI Discussion Paper Series, No. 600. %H A067667 Zhujun Zhang, <a href="https://www.researchgate.net/publication/333261503_A_Note_on_Counting_Binomial_Heaps">A Note on Counting Binomial Heaps</a>, ResearchGate, June 2019. %F A067667 From _Alexander Karpov_, Aug 09 2015: (Start) %F A067667 a(n) = (2^n)!/2^(2^n-1). %F A067667 a(n) = (2^n-1)!!*a(n-1). %F A067667 a(n) = binomial(2^n-1, 2^(n-1)-1)*(a(n-1))^2 = A069954(n-1) * (a(n-1))^2. %F A067667 (End) %F A067667 a(n) = A049606(2^n). - _Zhujun Zhang_, Jun 16 2019 %F A067667 a(n) = Product_{odd k < 2^n} k^(n - floor(log_2(k))). - _Harry Richman_, May 18 2023 %t A067667 Table[(2^n)! / 2^(2^n - 1), {n, 6}] (* _Vincenzo Librandi_, Aug 10 2015 *) %o A067667 (Magma) [Factorial(2^n)/2^(2^n-1): n in [1..6]]; // _Vincenzo Librandi_, Aug 10 2015 %o A067667 (PARI) a(n) = (2^n)!/2^(2^n-1) \\ _Jianing Song_, Jul 15 2021 %Y A067667 Cf. A049606, A069954. %K A067667 nonn %O A067667 0,3 %A A067667 _Benoit Cloitre_, Feb 04 2002 %E A067667 a(0) prepended by _Jianing Song_, Jul 15 2021